
TOWARDS QUANTUM GAS
MICROSCOPY OF CESIUM AND

POTASSIUM ATOMS IN
OPTICAL LATTICES

Dipl.-Phys. Philipp Weinmann





UNIVERSITY OF INNSBRUCK

DOCTORAL THESIS

TOWARDS QUANTUM GAS
MICROSCOPY OF CESIUM AND

POTASSIUM ATOMS IN
OPTICAL LATTICES

Author:
DIPL.-PHYS.
PHILIPP WEINMANN

Advisors:
PROF. DR. HANNS-CHRISTOPH NÄGERL

PROF. DR. RAINER BLATT

A Thesis submitted to the Faculty of Mathematics, Computer Science, and Physics
of the University of Innsbruck, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy (PhD)

Innsbruck, July 2019

www.uibk.ac.at




Jetzt ist mein Rucksack nur noch ein Rucksack.





Abstract
Quantum simulation promises to be of assistance in studying a variety of unresolved questions
in condensed matter physics. Among the condensed matter systems that are currently of par-
ticular interest are strongly-correlated electrons in solids. Strongly-correlated electrons are be-
lieved to be at the heart of many intriguing solid-state phenomena including high-temperature
superconductivity and magnetism. Many of these phenomena are still lacking a theoretical
and experimentally verified understanding. Gaining a theoretical understanding of the un-
derlying processes that cause these phenomena will put researchers in a position to design
materials with tailored properties. Quantum simulation of solids therefore has attracted both
theoretical and experimental interest. A promising platform for quantum simulation of solids
are ultracold quantum gases of neutral atoms and polar molecules trapped in optical lattices.

This Thesis reports on the technical design and experimental realization of an entirely
new quantum gas apparatus that will be used for quantum simulation of solid state systems.
The new quantum gas apparatus is a two-species apparatus. It allows for the production of
quantum degenerate samples of 133Cs atoms, the three potassium isotopes 39K, 40K, and 41K,
as well as KCs molecules. To study and image ultracold quantum gases, the apparatus em-
bodies an ultra-high-vacuum glass cell that incorporates in-vacuo rod electrodes and a high-
resolution imaging system. The rod electrodes will enable the polarization of KCs molecules
and thereby allow for studying spin lattice Hamiltonians. The high-resolution imaging sys-
tem is capable of resolving single atoms at single sites of an optical lattice and thus facilitates
to perform fluorescence quantum gas microscopy. The Thesis furthermore presents numer-
ical results on the electric field dependence of the induced electric dipole moment of 39KCs
molecules for different rotational states of the electronic-vibrational ground state. It addition-
ally includes simulations of different electric field distributions that can be generated with the
rod electrodes within the glass cell. The effect of the residual electric field inhomogeneities
found in these simulations on future experiments with ultracold 39KCs molecules in optical
lattices is analyzed, in particular on dipolar spin exchange within the Heisenberg XXZ spin
lattice model. First experimental results of the new K−Cs apparatus were published in three
articles of peer-reviewed journals and are summarized in this work.

Future experiments of the K−Cs apparatus aim at employing fluorescence quantum gas
microscopy of 39K atoms via the 4S1/2 → 5P3/2 transition (transition wavelength 404.4 nm). Vi-
olet fluorescence quantum gas microscopy of alkali atoms has not been experimentally demon-
strated so far. This Thesis therefore theoretically studies its feasibility with respect to 39K atoms
for the case that the trapped 39K atoms are simultaneously laser cooled via electromagnetically-
induced transparency laser cooling. The obtained results indicate that violet fluorescence
quantum gas microscopy of 39K atoms with parallel electromagnetically-induced transparency
laser cooling in principle should be possible. The study required computation of numerical
values for the frequency-dependent atomic polarizabilities of the ground and various excited
states of 39K and results are presented here. To image 39K atoms via the 4S1/2 → 5P3/2 tran-
sition, a home-built diode laser was set up that generates laser light at 404.4 nm. The Thesis
therefore gives a detailed description and discussion of the laser system and its optical setup.
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Kurzfassung

Das Quantensimulieren von physikalischen Systemen weckt Hoffnungen, beim Erforschen
ungelöster Fragen der Physik der kondensierten Materie hilfreich zu sein. Stark korrelierte
Elektronen in Festkörpern gehören zu jenen Systemen kondensierter Materie, die gegenwärtig
besondere Aufmerksamkeit auf sich ziehen. So wird vermutet, dass stark korrelierte Elek-
tronen eine zentrale Rolle bei faszinierenden Festkörperphänomenen einnehmen wie zum
Beispiel Hochtemperatursupraleitung und Magnetismus. Vielen dieser Festkörperphänomene
fehlt es bislang an einem theoretischen und experimentell belegten Verständnis. Das Verstehen
der Prozesse, die für das Auftreten jener Phänomene verantwortlich sind, würde es Forschern
ermöglichen, Materialien mit individuell abgestimmten Eigenschaften zu entwickeln. Aus
diesem Grund erfährt das Quantensimulieren von Festkörpern großes Interesse sowohl von-
seiten der theoretischen als auch der experimentellen Physik. Eine vielversprechende Platt-
form für die experimentelle Durchführung von Festkörper-Quantensimulationen bieten ultra-
kalte, in optischen Gittern gefangene Quantengase aus neutralen Atomen und polaren Mole-
külen.

Die vorliegende Doktorarbeit behandelt das technische Konzept und die experimentelle
Realisierung einer von Grund auf neu entwickelten Quantengasapparatur. Bei dieser Appa-
ratur handelt es sich um ein Zwei-Spezies Quantengasexperiment, welches zukünftig dazu
verwendet wird, Festkörpersysteme mit Hilfe von Quantensimulation zu untersuchen. Der
neue experimentelle Aufbau ermöglicht die Erzeugung entarteter Gase aus 133Cs Atomen,
den drei Kaliumisotopen 39K, 40K und 41K als auch aus KCs Molekülen. Für das Untersuchen
und Abbilden dieser ultrakalten Quantengase besitzt die Apparatur eine Ultrahochvakuum-
Glaszelle, welche ein hochauflösendes Abbildungssystem und Stabelektroden beinhaltet. Das
Abbildungssystem ist in der Lage, einzelne Atome auf verschiedenen Gitterplätzen eines op-
tischen Gitters aufzulösen und ebnet damit den Weg für Fluoreszenzquantengasmikrosko-
pie. Mittels der Elektroden können KCs-Moleküle polarisiert und damit theoretische Modelle
von Spingittern untersucht werden. Diese Dissertation beschäftigt sich desweiteren mit der
Feldstärkeabhängigkeit des induzierten elektrischen Dipolmomentes von 39KCs Molekülen in
externen elektrischen Feldern. Es werden ausschließlich die induzierten elektrischen Dipol-
momente der energetisch niedrigsten Rotationszustände des vibronischen und elektronischen
Grundzustandes von 39KCs Molekülen betrachtet. Für diese induzierten elektrischen Dipol-
momente werden numerische Werte berechnet und diskutiert. Die Arbeit enthält außerdem
Simulationen elektrischer Feldkonfigurationen, welche mit den Stabelektroden erzeugt wer-
den können. Die bei den Simulationen gefundenen elektrischen Feldinhomogenitäten wer-
den mit Blick auf ihren Einluss auf Experimente mit 39KCs Molekülen in optischen Gittern
analysiert. Diese Analyse geschieht im Besonderen hinsichtlich dipolaren Spinaustausches im
Heisenberg XXZ Spingittermodell. Erste experimentelle Ergebnisse der neuen K−Cs Quan-
tengasapparatur wurden in drei Artikeln in Fachjournalen publiziert und sind in dieser Arbeit
zusammengefasst.

Für zukünftige Experimente mit der K−Cs Apparatur ist der Einsatz von Fluoreszenz-
quantengasmikroskopie von 39K Atomen mittels des atomaren 4S1/2 → 5P3/2−Übergangs
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(Wellenlänge 404.4 nm) geplant. Fluoreszenzquantengasmikroskopie von Alkaliatomen im vi-
oletten Spektralbereich wurde bis heute experimentell nicht realisiert. Aus diesem Grund un-
tersucht die vorliegende Arbeit die Durchführbarkeit von Fluoreszenzquantengasmikroskopie
an gefangenen 39K Atomen im violetten Spektralbereich, wobei angenommen wird, dass die
39K Atome gleichzeitig mittels elektromagnetisch induzierter Transparenz lasergekühlt wer-
den. Die numerischen Ergebnisse der Analyse legen die prinzipielle Durchführbarkeit dieser
Methode nahe. Die Analyse erforderte die Berechnung der frequenzabhängigen, elektrischen
Polarisierbarkeit des Grundzustandes und einiger angeregter Zustände von 39K Atomen. Die
berechneten Resultate für die Polarisierbarkeiten werden hier präsentiert und diskutiert. Um
39K Atome auf dem 4S1/2 → 5P3/2−Übergang letztlich abbilden zu können, wurde ein Dio-
denlaser zur Erzeugung von Laserlicht der Wellenlänge 404.4 nm aufgebaut. Eine detaillierte
Beschreibung und Diskussion des Laseraufbaus und des optischen Aufbaus findet sich in
dieser Arbeit.
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Introduction

Electronic materials are omnipresent in our daily life. They are used to manufacture elec-
tronic components (e.g. wires, chips, circuit boards, batteries,. . . ) and can be found in any
technical device ranging from mobile phones and sensing instruments to electric cars and so-
lar cells. Due to ever increasing expectations on technical devices and the emergence of new
applications, the technical requirements on electronic materials steadily grow. Searching for
novel materials that meet these new specifications thus has become a hot research field [Nat].
In the past, the quest for new (electronic) materials with desired properties has been guided
by educated guesses and trial and error. This statistical approach is rather time consuming
and cost-intensive. It is therefore desirable to design materials with tailored properties in a
controlled and predictive fashion. In order to carry out controlled material design, different
strategies can be pursued. One strategy combines experimental data of material properties
of known materials and scientific theory in massive material databases. The databases are
evaluated to search for new patterns in the material properties and to deduce empirical rules.
Based on the found empirical rules hypotheses on material properties of unknown materials
can be generated, which finally can be tested pointedly. The method just outlined to design
materials relies on knowledge discovery in databases and is known as material data mining
[Raj05]. Alternatively, one can identify and understand the physical origin of material prop-
erties by studying crystals of known materials through experiments in a laboratory. In this
way one gains fundamental insight into the underlying processes within the crystal that lead
to the occurence of certain material properties. The insight can be used thereafter to design
materials deliberately. Studying material properties, or more general solid-state phenomena,
through experiments attracts more and more attention also from related research disciplines.
The latter offer novel experimental methods with which open questions in solid-state physics
can be investigated. Dilute gases of neutral atoms at nanokelvin temperatures, called ultra-
cold atoms, constitute such an experimental method. Since dilute gases of ultracold atoms are
dominated by quantum effects, these gases are also known as ultracold quantum gases. This
Thesis describes the technical design of an experimental apparatus that will be used in future
to study solid-state phenomena via ultracold quantum gases. It demonstrates the current ex-
perimental capabilities of the apparatus, presents first experimental results, and simulates the
performance of crucial parts of the setup as a characterization for future studies.

Macroscopic material properties in many cases are the result of processes that take place
on the atomic scale. These processes are often associated with the electrons of the solid. To de-
sign materials with desired properties, it is hence crucial to understand the electronic processes
within a solid. As the electron density of a solid is roughly on the order of∼ 1023 electrons per
cubic centimeter, electrons within a solid constitute a many-body system. Examples for ma-
terial properties that occur due to electrons are the electrical conductivity of semiconductors,
which depends on the number of free electrons, and magnetism, which relates to the mutual
alignment of the electrons’ magnetic moments. The behavior of electrons in a solid is gov-
erned among others by the chemical composition of the material, the lattice structure of the
crystal as well as the interplay of kinetic energy, Coulomb repulsion, and magnetic interaction
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of the electrons. Depending on these parameters the electrons can exhibit radically different
behaviors. In many materials, like silicon and aluminum, the kinetic energy is the dominant
energy contribution [Mor12]. Thus, the electrons are well described within a picture of non-
interacting particles. In many other materials, however, Coulomb repulsion is of the order of
the kinetic energy or even larger and causes strong correlations between the electrons [Mor12].
Since the behavior of each electron in the latter materials is influenced by the behavior of all
other electrons, the electrons cannot be treated as independent particles anymore. Instead, the
strongly-correlated, cooperative behavior of all electrons needs to be considered.

Strong correlations between the particles of a many-body system generally entail a col-
lective behavior that emerges from the particles and their mutual interaction. The collective
behavior differs qualitatively from that of the individual particles of the many-body system.
Thus, this type of behavior has been termed emergent behavior. Emergent behavior occurs for
example in strongly correlated materials at sufficiently low temperatures [Kot04]. The elec-
trons then exhibit ground state phases, which can have exotic properties, some of which might
have technological applications. Magnetite (Fe3O4), for instance, exhibits a charge-ordered
phase below ∼120 K [Sen11] and loss of electrical resistance (superconductivity) has been ob-
served in compounds of the Ba−La−Cu−O system below 13 K [Bed86]. At zero temperature,
ground state phases are known as quantum phases and connect to each other via quantum phase
transitions [Sac11]. In contrast to conventional phase transitions, which are induced by thermal
fluctuations, quantum phase transitions are driven by quantum fluctuations due to the Heisen-
berg uncertainty principle [Sac11]. Even though quantum phase transitions exist solely at zero
temperature and are hence physically inaccessible, they can affect the behavior of electrons in
solids at temperatures well above absolute zero and even room temperature [Sac06]. Studying
quantum phases, quantum phase transitions, and phase diagrams of strongly-correlated elec-
trons in solids is thus interesting with respect to technological applications but also from the
perspective of basic science to gain a complete understanding of strongly-correlated electron
systems.

Strong correlations occur not only between electrons in solids but also in various other
systems in nature. Further examples for strongly-correlated systems are atomic nuclei, neutron
stars, and the quark-gluon plasma. The investigation of strongly-correlated quantum systems
is therefore of general interest. In general, to theoretically describe a given quantum system
and to predict its time evolution, it requires knowledge of the parameters that specify the quan-
tum mechanical state of the system at any time of its evolution. The number of parameters as
well as the number of differential equations to solve for this purpose increase exponentially
with the number of constituent particles within the quantum system under study. Theoretical
simulations of many-body systems on classical computers therefore become challenging if not
impossible. Due to this computational limitation, some of today’s open questions in the field
of strongly-correlated systems are too complex to be solved even with presently existing and
soon-to-be supercomputers [Gro17]. A solution to that limitation are experiments that use a
well controllable quantum system to simulate and study another (often less controllable) quan-
tum system. This approach has been pointed out by Richard Feynman [Fey82] and is known
as quantum simulation. Various quantum systems have been suggested to serve as quantum
simulators of strongly-correlated quantum many-body systems, for instance, neutral atoms,
ions, and polar molecules [Geo14].

Neutral atoms provide favorable attributes for quantum simulation of strongly interact-
ing many-body systems. The existence of different atomic species, for example, facilitates the
experimental realization of different quantum systems (e.g. bosonic and fermionic systems,
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Bose-Fermi mixtures, heterospecies mixtures). This variety of different atoms therefore ex-
pands the list of quantum systems that can be experimentally simulated. Besides that, neutral
atoms in ultra-high vacuum interact weakly with the environment. The weak coupling to the
environment allows for a coherent evolution of atomic quantum systems and thereby the in-
vestigation of their intrinsic time evolution. If atoms are cooled to nanokelvin temperatures,
one can gain experimental control of various atomic parameters through external fields. The
contact interaction between ultracold atoms, for instance, can be tuned in sign and strength by
means of external magnetic fields via magnetic Feshbach resonances [Chi10]. This tunability
of the interaction gives a handle to realize weakly as well as strongly interacting, repulsive or
attractive quantum systems along with non-interacting quantum systems if the interaction is
nulled. The level structure of neutral atoms allows for the preparation and manipulation of
the internal state of atoms via microwaves, radio waves, and laser light and for probing ultra-
cold atoms. Moreover, laser light fields permit to trap ultracold atoms in optical potentials and
enable one to control their motion along each spatial direction [Gri00]. Finally, by engineer-
ing appropriate laser light fields, the optical potentials can be made periodic in one or more
dimensions (so-called optical lattice potentials). Atoms within optical lattice potentials offer the
possibility to study the behavior of particles in periodic potentials such as that of electrons
within the electrostatic potential of the ionic atom cores in crystals [Lew07].

Numerous ultracold atom experiments exist nowadays. Most of them work with alkali
atoms, which possess advantageous properties for the formation of ultracold atomic samples,
such as a relatively simple electronic structure compared to other atomic species. Ultracold
atom samples of other atomic species, including earth-alkaline atoms, lanthanide atoms, and
transition metals, have been experimentally demonstrated as well, and expand the scientific
capabilities of ultracold atom experiments. The technical as well as experimental progress in
the field of ultracold quantum gases in the continuum or in optical lattices is well documented
in several review articles, see e.g. Refs. [Blo08, Gro17, Hof18]. A landmark experiment in the
field of ultracold atoms in optical lattices was the observation of the phase transition from a
superfluid to a Mott insulator with bosonic 87Rb atoms [Gre02]. A similar type of phase transi-
tion occurs in systems that are described by the fermionic Hubbard Hamiltonian, for example
in strongly-correlated electron systems of transition metals [Hub63]. The experimental obser-
vation of the superfluid to Mott insulator transition with ultracold 87Rb atoms therefore was
a first step towards quantum simulation of strongly-correlated many-body systems. Ultracold
atoms have furthermore been used e.g. to study low-dimensional quantum systems, to realize
quantum matter whose properties are characterized by topology (topological quantum matter),
and to observe nonequilibrium dynamics in strongly-correlated many-body systems [Blo08,
Gro17].

Quantum gas apparatuses for the production of ultracold single-species atom gases are
built routinely nowadays. In contrast, experimental setups that aim at the production of ultra-
cold mixtures of two different atomic species are less common due to their increased technical
complexity. A two-species quantum gas apparatus, however, offers experimental capabili-
ties beyond those of a single-species apparatus. In particular, within a two-species appara-
tus atoms can be combined pairwise, one atom of each atomic species, to form heteronuclear
molecules. Diatomic heteronuclear molecules possess a permanent electric dipole moment
and are therefore denoted as polar molecules [Atk17]. When exposed to an external electric
field, polar molecules exhibit a tunable induced electric dipole moment and therefore inter-
act with each other via dipole-dipole interaction. Ultracold polar molecules thus represent a
platform to study quantum gases with dipolar interactions. In the case that the dipole-dipole
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interaction dominates over the contact interaction, the quantum gas is said to be a dipolar quan-
tum gas. Dipolar quantum gases offer a rich variety of phenomena [Lah09]. They have been
realized so far mainly with neutral atoms that possess a permanent magnetic moment µm and
thereby interact via magnetic dipole-dipole interaction. The first experimental demonstration
of a dipolar quantum gas involved 52Cr atoms, for which µm equals 6µB with µB being Bohr’s
magneton [Koc08]. The chemical element with the largest permanent magnetic moment is dys-
prosium (µm = 10µB). A dipolar quantum gas of dysprosium atoms was created for the first
time in Ref. [Lu11]. Since the dipole-dipole interaction between polar molecules can be much
stronger than for magnetic atoms [Gad16], dipolar effects in a quantum gas of polar molecules
can be more pronounced. In total 10 different combinations for diatomic polar molecules exist
among the alkaline elements lithium to cesium. The molecules of five of these combinations
(LiCs, LiRb, LiK, KRb, and LiNa) react exoergically under pair collisions of like dimers in
their rovibrational and electronic ground state [Jul11, Żuc10]. If no countermeasures are initi-
ated, dimer-dimer collisions lead to molecular losses and thus an elimination of the molecular
quantum gas. The remaining five combinations (NaCs, NaRb, NaK, KCs, and RbCs) are chem-
ically stable and do not suffer from dimer-dimer losses in their rovibrational and electronic
ground state. Ultracold quantum gases of polar molecules in their absolute ground state have
been achieved in the past with various alkali dimers in free space as well as in optical lattices
[Gad16].

Ultracold polar molecules, due to their permanent electric dipole moment, possess a spec-
trum that is purely rotational [Atk17]. This circumstance enables one to encode a spin−1/2 to
polar molecules by assigning the two spin states ’spin up’ and ’spin down’ of the spin−1/2
to two different rotational states of the molecules. An ensemble of polar molecules that are
localized to individual sites of an optical lattice and that are polarized by an external electric
field can then be effectively described as an array of localized, interacting spins [Wal15]. The
dipole-dipole interaction between these trapped and polarized molecules acts as a spin ex-
change interaction and can lead to mutual alignment of the effective spins as well as to dipolar
spin exchange between them. This behavior of the polarized molecules is similar to that of elec-
trons in strongly correlated materials, where mutual alignment of the electronic spins is caused
by the exchange interaction of the electrons. Typically, the exchange interaction of electrons in
correlated materials is anisotropic [Han94]. To properly describe the magnetic behavior of the
electrons in different correlated materials, a multitude of spin lattice Hamiltonians has there-
fore been suggested. Because ultracold polar molecules in optical lattices can be mapped onto
many of these spin lattice Hamiltonians, these systems represent an interesting scientific re-
search field to study solid-state phenomena. One example for such a spin lattice Hamiltonian
that can be investigated with polar molecules is the antiferromagnetic spin−1/2 Heisenberg
XXZ Hamiltonian on a square lattice [Wal15]. It is considered to capture the physics that is
essential to understand the occurence of high-temperature superconductivity in cuprate sys-
tems [Man91].1 Further scientific goals that can be pursued with ultracold polar molecules
include precision measurements, molecule spectroscopy, quantum chemistry, and quantum
computing [Car09].

The investigation of ultracold atomic and molecular quantum gases in optical lattices
within the past relied mainly on optical detection methods. The workhorse among these opti-
cal imaging methods makes use of the absorptive properties of the constituent atoms [Ket99]
(or molecules [Wan10]) and hence is known as absorption imaging. Absorption imaging of ul-

1High-temperature superconductors are materials that become superconducting at temperatures well above the
one for which mercury becomes superconducting.
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tracold quantum gases in optical lattices is most often performed after the quantum gas has
been released from the optical lattice and then yields information on bulk properties (e.g. atom
number, momentum distribution, . . . ) [Blo13]. Sometimes, however, it is desirable to study lo-
cal quantities of the trapped particles like the in-trap particle distribution or entropy. For this
reason, more and more quantum gas apparatuses study ultracold quantum gases in optical
lattices in-situ via fluorescence imaging. To observe and resolve single atoms while they are
trapped at single sites of an optical lattice, these apparatuses employ a high-resolution imaging
system.2 Accordingly, this imaging technique is known as fluorescence quantum gas microscopy.
Fluorescence quantum gas microscopy has been demonstrated for the first time in 2009 using
87Rb atoms [Bak09, She10]. The capability to detect single atoms and to resolve single lattice
sites makes fluorescence quantum gas microscopy an ideal instrument to conduct microscopic
studies of model Hamiltonians and to observe spatial ordering in quantum phases.

This Thesis centers around the design of a new two-species quantum gas apparatus within
the Nägerl group in Innsbruck. The new apparatus aims at studying ultracold atoms and po-
lar molecules within optical lattices via fluorescence quantum gas microscopy. At the begin-
ning of this Thesis none of the existing quantum gas apparatuses of the Nägerl group offered
the experimental capabilities to perform fluorescence quantum gas microscopy. It was there-
fore initially intended to convert the existing single-species CsIII apparatus into a two-species
quantum gas apparatus and to equip it with a high-resolution imaging system for fluores-
cence quantum gas microscopy. The CsIII apparatus has been used to perform experimental
work on ultracold Cs atoms and Cs2 molecules in the past and has been running reliably over
many years. A reconstruction of it, however, would have required a temporary shut down.
After several months of planning the reconstruction of the CsIII apparatus, it was therefore
decided to refrain from a modification of the CsIII apparatus. Instead, it was decided to set up
a completely new laboratory with an entirely new quantum gas apparatus. The new apparatus
facilitates the production of quantum gases of the two atomic species cesium and potassium.
Ultracold quantum gases of cesium have a long tradition in Innsbruck and much experience
has been gained with this atomic species in previous experiments over the past years [Web03b,
Dan10, Rei17]. Cesium has only one stable isotope, 133Cs, which is a boson [San09].3 It offers
magnetic Feshbach resonances and therefore allows for tuning of the interparticle interactions.
Potassium on the other side has three stable isotopes, namely 39K, 40K, and 41K [San08]. The
isotopes 39K and 41K are bosonic whereas the isotope 40K is fermionic. The isotope 40K is the
only stable fermionic isotope among the alkali metal elements besides 6Li. The choice of atomic
species of the new K−Cs apparatus will enable the Nägerl group to create and study a wide
range of different quantum systems ranging from atomic K and Cs quantum gases to K−Cs
mixtures and KCs molecules with bosonic or fermionic spin statistics or mixtures of both.

The future research lines of the new K−Cs apparatus are twofold: one research line will
focus on using ultracold atoms in optical lattices to study (strongly-correlated) many-body
quantum systems. An important aspect of this research line will be the experimental real-
ization of model Hamiltonians and the investigation of their phase diagrams as well as the
properties of their quantum phases. As part of this research line, the high-resolution imaging
system of the K−Cs apparatus will allow for imaging of the trapped atoms with single-atom
and single-site resolution and therefore for in-situ detection of spatial ordering in quantum
phases. A model Hamiltonian of interest will be the Fermi-Hubbard Hamiltonian for the case

2High-resolution imaging of ultracold molecules with single-molecule and single-site resolution has not been
experimentally realized up to now.

3As 133Cs is the only stable isotope of Cs, I will often use the notation Cs instead of 133Cs in this Thesis.
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that the number of atoms within the optical lattice equals the number of lattice nodes (one-
atom commensurate filling). In this respect, it will be attractive to probe the entire phase
diagram of the Fermi-Hubbard Hamiltonian and to observe and investigate spin ordering e.g.
in the weakly interacting regime. The latter might be of relevance for real materials [Tar18].
Away from a one-atom commensurate filling, i.e. in the presence of an excess or defect of
atoms relative to the number of lattice nodes, the Fermi-Hubbard model is referred to as being
doped. The doped Fermi-Hubbard model promises to exhibit new quantum phases such as a
d−wave superconducting phase [Tar18]. Thus, it will be also interesting to study the doped
Fermi-Hubbard model for different particle and hole dopings. The second research line of the
K−Cs apparatus will concentrate on the production of ultracold polar KCs molecules and their
application to study spin lattice models. Here, the experimental realization of the spin−1/2
antiferromagnetic XXZ Heisenberg model on a two-dimensional square lattice will be of spe-
cial interest. This spin model is assumed to describe the physics of the current-carrying atomic
layers of cuprates, which are known for being high-temperature superconductors [Man91,
Han94]. Finally, since the new K−Cs apparatus will allow for switching between the bosonic
and the fermionic K isotopes, also the production of fermionic 40K133Cs molecules will be
within reach. Fermionic 40K133Cs molecules are the only chemically stable fermionic molecules
of two alkali atoms apart from 23Na40K [Jul11]. The K−Cs apparatus thus facilitates the inves-
tigation of quantum phenomena in ultracold gases of fermionic molecules such as the expected
occurence of a molecular superfluid due to Bardeen-Cooper-Schrieffer pairing of fermionic
molecules [Car09].

Thesis Overview

The work presented in this Thesis focuses on the design and realization of a new two-species
quantum gas apparatus for ultracold mixtures of K and Cs atoms and KCs ground state mol-
ecules. The Thesis describes the technical design of the entire K−Cs vacuum apparatus and
explains each of its sections in detail. To generate electric fields and thus to polarize KCs
molecules, the apparatus comprises a set of electrodes. Two electric field configurations that
can be generated by these electrodes are simulated as part of this Thesis. The electric field
homogeneities are numerically analyzed and the influence of field inhomogeneities on future
experiments on the spin−1/2 Heisenberg XXZ lattice model with 39KCs molecules is deter-
mined. Additionally, induced electric dipole moments of 39KCs molecules are computed as
a function of an applied electric field. The results will be relevant for future experiments
with 39KCs molecules. A long term goal of the K−Cs apparatus is to image 39K atoms in
optical lattices in-situ via fluorescence imaging in the violet region of the visible spectrum at
404.4 nm. For this reason, a home-built diode laser setup is built that generates laser light
at 404.4 nm. To predict the optical lattice potential that the trapped 39K atoms experience in
different atomic states during violet fluorescence imaging, the frequency-dependent atomic
polarizabilities of the ground and several excited atomic states of 39K are calculated. Fi-
nally, this Thesis addresses the question whether violet fluorescence imaging and simultane-
ous electromagnetically-induced transparency cooling will allow for the performance of violet
fluorescence quantum gas microscopy of ultracold 39K atoms in optical lattices.

The Thesis is structured as follows: Chapter 1 introduces the theoretical framework to de-
scribe electrons in crystals. This mathematical formalism has great similarity to the description
of ultracold atoms in optical lattices and will be helpful to understand later Chapters. Chap-
ter 2 summarizes general properties of ultracold atoms and discusses how optical lattices can
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be generated in experiments. As an example for how model Hamiltonians can be realized
with ultracold atoms in optical lattices the experimental implementation of the bosonic ver-
sion of the Fermi-Hubbard model, also known as Bose-Hubbard model, is discussed. Chapter
3 explains the fundamentals of fluorescence quantum gas microscopy of ultracold atoms in
optical lattices and outlines the experimental sequence that is planned to be used for fluores-
cence quantum gas microscopy within the new K−Cs apparatus. Chapter 4 establishes the
mathematical formalism to calculate static and frequency-dependent atomic polarizabilities.
The obtained equations are used to numerically determine frequency-dependent atomic po-
larizabilities for 39K. Chapter 5 deals with violet fluorescence imaging of trapped 39K atoms
and simultaneous laser cooling via electromagnetically-induced transparency cooling. It ad-
dresses the question whether this technique can be used for violet fluorescence quantum gas
microscopy of ultracold 39K atoms in optical lattices and therefore analyzes basic quantities.
Chapter 6 describes the technical design of the main system of the K−Cs apparatus. Chapter
7 summarizes the first experimental results that were obtained with the main system of the
K−Cs apparatus and that were published in three articles of peer-reviewed journals [Grö16,
Grö17c, Grö17b]. Chapter 8 describes the design of the science chamber of the K−Cs appa-
ratus. Chapter 9 presents numerical results for the induced electric dipole moments of 39KCs
molecules as a function of an external electric field. It discusses electric field simulations for
the electrodes within the science chamber and analyzes the impact of the found electric field
inhomogeneities on future experiments. In addition, the Chapter evaluates the electric field
dependency of the spin−1/2 Heisenberg XXZ lattice model parameters for 39KCs molecules
and numerically analyzes the amplitude for dipolar spin exchange between 39KCs molecules
within the K−Cs apparatus. Chapter 10 presents the experimental work on the home-built
diode laser that is used to generate violet laser light at 404.4 nm. The Thesis concludes with a
Summary of the presented work and an Outlook of the ongoing work in the K−Cs laboratory.
Additional technical information on the vacuum apparatus is given in the Appendix.
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1. Electrons in Solids
A core motivation of the K−Cs apparatus is the simulation and studying of the behavior of
electrons in solids with ultracold atoms in optical lattices. Ultracold atoms in optical lattices
behave similarly to electrons in solids. Because of this similarity, mathematical concepts of
solid-state physics have been adopted to describe ultracold atoms in optical lattices. This
Chapter therefore aims to give a general introduction to the theoretical description of elec-
trons within solids. The mathematical concepts and nomenclature introduced in this Chapter
will be useful in later Chapters.

The behavior of electrons in a solid depends critically on the ratio of their kinetic energy
and Coulomb interaction energy. If the Coulomb interaction energy is small compared to the
kinetic energy of the electrons (weak interactions), the electrons within a solid move indepen-
dently from each other. When the Coulomb interaction energy is large compared to the ki-
netic energy (strong interactions), strong correlations arise and thus a collective behavior of the
electrons emerges [Ful12]. This Chapter summarizes different theoretical approaches, which
have been developed in the past, to describe independent and strongly-correlated electrons in
solids. For the case of strong interactions, the Chapter focuses on two important model Hamil-
tonians, namely the Fermi-Hubbard Hamiltonian and the spin−1/2 Heisenberg XXZ lattice
Hamiltonian. Both models are of interest for future experiments with the K−Cs apparatus. A
comprehensive discussion of the subject of electrons in crystals is given in many textbooks of
solid-state physics, e.g. [Ash76, Kop07, Gro14, Ful12].

1.1. Independent Electrons

A solid consists of a large number of atoms (about ∼ 1022 atoms per cubic centimeter). The
ionic cores of the atoms sit on the sites of a lattice that, in the ideal case, is infinitely large and
strictly periodic in all three spatial dimensions. The lattice is then also known as Bravais lattice.
If the Bravais lattice has a simple cubic geometry with lattice constant a and with one ionic core
per lattice site, the position vectors ~R of the ionic cores within the solid are defined through
[Ash76]

~R = a (nx~ex + ny~ey + nz~ez) , (1.1)

where ~ex, ~ey, and ~ez are Cartesian unit vectors in x−, y−, and z−direction and the coefficients
nx, ny, and nz are integers, i.e. {nx, ny, nz} ∈ Z. Since the mass of an ionic atom core (on
the order of the proton mass mp) is much larger than the electron mass me (mp/me ≈ 1836), the
motion of the ionic atom cores in solids is much slower than that of the electrons. We therefore
can neglect the motional degrees of freedom of the ionic cores in the remainder and assume a
rigid crystal lattice (adiabatic approximation) [Ash76].

The ionic cores and the electrons outside of the ionic cores interact with each other through
Coulomb interaction. The interaction potential V that a single electron µ′ experiences depends
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on the positions ~Ri (with i ∈ N) of all ionic cores and the positions ~rµ of all other electrons
µ ∈ N with µ 6= µ′, i.e. V = V (~R1, ~R2, . . . , ~r1, ~r2, . . . , ~rµ′ , . . . ). For weak interactions, electrons
move independently from each other (independent electron approximation). In the independent
electron picture the interaction potential V = V (~R1, ~R2, . . . , ~r1, ~r2, . . . , ~rµ′ , . . . ) can be replaced
by an effective one-electron potential V = V (~r) [Ash76]. Given the discrete translational in-
variance of the Bravais lattice, the interaction potential V (~r) has the periodicity of the Bravais
lattice, i.e. [Ash76]

V (~r + ~R) = V (~r) (1.2)

for all vectors ~R of the Bravais lattice. The Hamiltonian for an independent electron in a solid
then reads

H = − ~2

2me
~∇2 + V (~r), (1.3)

where ~ = h/2π is the reduced Planck constant with h being the Planck constant.

1.1.1. Bloch Waves

The three-dimensional (3D) stationary Schrödinger equation associated with the Hamiltonian
H in Eq. (1.3) for a single electron within a solid with a simple cubic lattice has eigenfunctions
Ψ(~r) and eigenenergies E with

HΨ(~r) = EΨ(~r). (1.4)

To find the eigenfunctions Ψ(~r), one considers the electron to reside within the finite volume
of a rectangular prism with sides Lx, Ly, and Lz and imposes the usual periodic (Born-von
Karman) boundary conditions on the electron wave functions [Ash76]

Ψ(~r + Lx~ex) = Ψ(~r + Ly~ey) = Ψ(~r + Lz~ez) = Ψ(~r), (1.5)

where Lx, Ly, and Lz are integral multiples of the lattice constant a. The volume Lx · Ly · Lz
contains N = Lx/a · Ly/a · Lz/a atoms. The periodic boundary conditions in Eq. (1.5) put
constraints on the wave vector ~k = ~∇/i for which the Schrödinger equation in Eq. (1.4) is
solvable. The allowed wave vectors ~k have Cartesian vector components kx, ky, and kz that
obey the relations [Gro14]

kν =
2π

Lν
hν , with ν = x, y, z, (1.6)

where hν are positive (or negative) integers, i.e. hν ∈ Z. The eigenfunctions Ψ(~r) of the
Schrödinger equation depend on the wave vector ~k. We therefore adopt the notation for the
eigenfunctions to Ψ→ Ψ~k

. The eigenfunctions Ψ~k
are products of a plane wave and a function

u~k(~r) [Ash76]

Ψ~k
(~r) = ei

~k·~ru~k(~r). (1.7)
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The functions u~k(~r) and the eigenfunctions Ψ~k
(~r) fulfill the relations [Ash76]

u~k(~r + ~R) = u~k(~r), (1.8)

Ψ~k
(~r + ~R) = ei

~k·~RΨ~k
(~r) (1.9)

for every lattice vector ~R. Equation (1.7) together with Eq. (1.8) constitutes Bloch’s theorem and
the functions Ψ~k

(~r) are known as Bloch waves. For a given Bloch wave Ψ~k
(~r), the product ~~k

corresponds to its quasi-momentum.1 The probability density
∣∣Ψ~k

(~r)
∣∣2 of a Bloch wave for all

lattice sites ~R is non-zero and of equal magnitude. An electron that is described by a Bloch
wave Ψ~k

(~r) is therefore delocalized and spreads out over the entire crystal. Defining vectors
~G through the relation [Ash76]

~G =
2π

a
(gx~ex + gy~ey + gz~ez) (1.10)

one obtains the reciprocal lattice vectors ~G associated with a simple cubic Bravais lattice. The
coefficients gx, gy, and gz are integers with {gx, gy, gz} ∈ Z. A substitution ~k → ~k+ ~G (where ~G
can be any vector given by Eq. (1.10)) leaves the eigenfunctions Ψ~k

(~r) unchanged, i.e. [Gro14]

Ψ~k+ ~G
(~r) = Ψ~k

(~r). (1.11)

Equation (1.11) shows that the wave vector ~k of a Bloch wave Ψ~k
(~r) is not unambiguously

defined. One therefore limits the wave vector of a Bloch wave to lie within a certain region of
~k−space and then denotes it as ~q. This ~k−space region is defined by the following conditions
for the Cartesian vector components qx, qy, and qz of ~q [Ash76]:

−π/a ≤ qx, qy, qz < π/a. (1.12)

Equation (1.12) defines the first Brillouin zone (1. BZ) of the reciprocal lattice of a simple cubic
Bravais lattice. If the wave vector ~k lies without the 1. Brillouin zone, it can be transfered into
it by a reciprocal lattice vector ~G with

~k = ~q + ~G. (1.13)

Owing to the reduction of the Bloch wave vectors to the 1. Brillouin zone, for each wave vector
~q Eq. (1.4) has in principle infinitely many solutions Ψ~q(~r), which have different eigenenergies
[Ash76, Gro14]. To distinguish the solutions for a given wave vector ~q, they are labeled with
the band index n ∈ {0, 1, 2, . . . } in order of increasing energy (E → E

(n)
~q ).

Eigenenergies E(n)
~q that belong to the same band index n form an energy band of the solid.

Since the eigenenergies E(n)
~q for a given ~q are discrete and increase with band index n, energy

bands with different band indices are shifted in energy. All energy bands together constitute

1Bloch waves Ψ~k(~r) are not eigenstates of the momentum operator ~
i
~∇ as can be verified by evaluation of the

derivative [Sin01]. The quantity ~~k therefore does not correspond to the classical electron momentum.

11



1. Electrons in Solids

the band structure of the solid. The ground state of the electrons within a solid is found by
filling up the single-electron levels with electrons. To account for Pauli’s exclusion principle,
electrons in the same level must have opposite spins. Among the energy bands that are com-
pletely filled with electrons at zero temperature the energetically highest band is denoted as
valence band. The band next higher in energy may be only partially filled with electrons or
entirely empty. This latter energy band is denoted as conduction band.

An alternative representation of Bloch waves can be obtained through expansion in plane
waves according to

Ψ(~r) =
∑
~k

C~ke
i~k·~r. (1.14)

Here, the C~k are expansion coefficients and the sum is over all vectors ~k that satisfy Eq. (1.6).

As the plane wave expansion of Ψ
(n)
~q (~r) contains solely wave vectors ~k that differ from ~q by

reciprocal lattice vectors ~G, it simplifies to [Ash76]

Ψ
(n)
~q (~r) =

∑
~G

C
(n)

~q− ~G
ei(~q−

~G)·~r (1.15)

with the sum taken over all reciprocal lattice vectors ~G.

1.1.2. Wannier Functions

Another common description of independent electrons in solids is attained through Fourier
series expansion of the Bloch waves in Eq. (1.15). With this expansion a Bloch wave Ψ

(n)
~q (~r)

can be expressed as [Gro14, Kop07, Mar12]

Ψ
(n)
~q (~r) =

1√
N

∑
~R

w̃n(~r − ~R)ei~q·
~R. (1.16)

Equation (1.16) shows that a Bloch wave Ψ
(n)
~q (~r) can be regarded as a sum of functions w̃n(~r)

that are translated to all lattice sites ~R, multiplied by a phase factor. Since the functions w̃n(~r−
~R) are Fourier coefficients of Ψ

(n)
~q (~r), they are given through [Gro14, Kop07, Mar12]

w̃n(~r − ~R) =
1√
N

∑
~q

e−i~q·
~RΨ

(n)
~q (~r). (1.17)

The functions w̃n(~r − ~R) are superpositions of Bloch waves Ψ
(n)
~q (~r) of the first Brillouin zone

of band n. The functions w̃n(~r − ~R) describe an electron that is localized to a lattice site at
position ~R and are known as Wannier functions.2 The set of Wannier functions w̃n(~r − ~R) of

2Due to the periodic boundary conditions for the electron wave functions in Eq. (1.5), the set of~k vectors for which
Eq. (1.4) is solvable is discrete (see Eq. (1.6)). The original publication on Wannier functions (Ref. [Wan62]) as
well as Ref. [Ash76] (much cited in this Chapter) are based, however, on formulas for continuous ~k. As a result,
the mathematical expressions for Ψ

(n)
~q (~r) and w̃n(~r) given in Refs. [Wan62, Ash76] differ from those presented

in this Thesis. The differences between the two representations are discussed in Ref. [Mar12].
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1.1. Independent Electrons

all bands n and for all lattice sites ~R constitutes an orthonormal basis of functions [Ash76].
Wannier functions depend on the relative distance ~r − ~R and decay exponentially at large

relative distances [Nen83]. The probability density
∣∣∣w̃n(~r − ~R)

∣∣∣2 of Wannier functions thus

can be seen as concentrated near the lattice sites ~R. Since Wannier functions w̃n(~r − ~R) have
contributions from Bloch waves Ψ

(n)
~q (~r) with different wave vectors ~q, they are delocalized

in momentum space. For the same reason, Wannier functions are no eigenfunctions of the
Schrödinger equation in Eq. (1.4).

Bloch waves Ψ
(n)
~q (~r) and Wannier functions w̃n(~r − ~R) allow one to describe electrons in

materials in which the electrons interact weakly with each other. This condition is fulfilled in
insulators as well as in metals [Ash76]. We now discuss two approximations to Bloch waves
that lead to a simplified description of electrons in these material classes.

1.1.3. Tight-Binding Approximation

We first consider a lattice of atoms in which the wave function overlap of adjacent atoms is
much smaller than unity. An electron in the vicinity of an ionic atom core at distances small
compared to the lattice constant a can then be thought of as being barely affected by other
ions and electrons of the lattice. In this case, near each lattice site ~R the full Hamiltonian
of the lattice can be approximated by the Hamiltonian of an isolated atom, Hatom [Ash76].
An isolated atom has electronic orbital eigenfunctions ϕn(~r) and eigenenergies Eatom

n given
through

Hatomϕn(~r) = Eatom
n ϕn(~r). (1.18)

The subscript n in Eq. (1.18) denotes the atomic level from which the nth energy band origi-
nates when atoms of the same kind are put together to form a lattice.

If the Bloch energies E(n)
~q of the nth energy band are approximate to the eigenenergy

Eatom
n of a free atom (E(n)

~q ≈ Eatom
n ) across the entire 1. Brillouin zone, the electrons of that

band can be considered as being localized to the individual atoms (tight-binding approximation)
[Ash76]. The Wannier functions w̃n(~r− ~R) in Eq. (1.16) can then be approximated by localized
atomic eigenfunctions ϕn(~r − ~R) or a linear combination of such with [Ash76]

w̃n(~r − ~R) ≈
∑
m

bmϕm(~r − ~R), (1.19)

where the bm are expansion coefficients. If we substitute the Wannier functions w̃n(~r − ~R) in
Eq. (1.16) with the approximation of Eq. (1.19), we obtain

Ψ
(n)
~q (~r) ≈ 1√

N

∑
~R

∑
m

bmϕm(~r − ~R)ei~q·
~R. (1.20)

Equation (1.20) represents the wavefunction of an electron in the tight-binding approximation.
The tight-binding approximation provides a good description of the electrons in insulators.
Owing to the small but finite overlap of atomic orbitals of neighboring atoms, an electron that
is described in the tight-binding approximation can be found at any lattice site ~R of the solid

13



1. Electrons in Solids

with equal probability as can be seen from Eq. (1.20). Taking as an example the case that the
expansion in Eq. (1.19) contains only a single, non-degenerate orbital, namely an s−orbital,
the resulting Bloch waves form an s−band of the lattice.

1.1.4. Nearly Free Electron Approximation

The tight-binding approximation yields a good description of electrons in insulators, as dis-
cussed previously. It, however, fails for conduction band electrons in metals. In the latter case,
the orbital overlap of adjacent atoms is larger than for insulators. The conduction electrons
cannot be considered as localized anymore and hence the electron wavefunctions cannot be
constructed from undisturbed atom orbitals. Conduction electrons in metals, instead, must be
seen as mobile. Due to their mobility, they experience an attenuated Coulomb interaction in
many metals and behave as if they move within an almost constant potential V (~r) [Ash76].3

For completeness, we summarize how nearly free electrons within a lattice can be described.
A convenient starting point is the plane wave expansion of the electron wavefunction

according to Eq. (1.14). If the interaction potential V (~r) in Eq. (1.3) is expanded into plane
waves as well, it takes the form [Gro14]

V (~r) =
∑
~G

V ~Ge
i ~G·~r (1.21)

with the sum taken over all reciprocal lattice vectors ~G and the coefficients V ~G being the asso-
ciated expansion coefficients. Inserting Eqs. (1.21) and (1.14) into Eq. (1.4) and rewriting the
resulting equation yields [Gro14]

[
~2

2me
(~q − ~G)2 − E(~q)

]
C~q− ~G +

∑
~G′

V ~G′C~q− ~G− ~G′ = 0. (1.22)

The set of linear equations in Eq. (1.22) determines the Bloch wave coefficients C~q− ~G for an
electron with wave vector ~q. Since conduction electrons in metals experience a quasi-constant
potential V (~r), they behave like quasi-free particles. Thus the eigenenergy E(~q) in Eq. (1.22)
can be approximated by E(~q) ≈ V ~G=~0 + (~~q)2/2me. For ~G 6= ~0 and considering only the two
dominant terms of the sum over ~G′ in Eq. (1.22), one obtains [Gro14]

C~q− ~G =
V− ~GC~q

~2
2me

[
~q 2 − (~q − ~G)2

] . (1.23)

For a quasi-constant potential V (~r), the coefficients V ~G6=~0 are small compared to V ~G=~0. A sec-
ond coefficient besides C~q, namely C~q− ~G in Eq. (1.23), therefore becomes significant only if the
relation [Gro14]

~q 2 ≈ (~q − ~G)2 (1.24)

3A second reason that leads to an attenuated Coulomb interaction for the conduction electrons in metals relates
to Pauli blocking due to the electrons of the ionic cores [Ash76].
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1.2. Correlated Electrons

for Bragg reflection is fulfilled. A conduction electron with wave vector ~q away from the Bril-
louin zone boundary does not fulfill Eq. (1.24). In this case, the plane wave expansion in Eq.
(1.14) is governed by a single plane wave with expansion coefficient C~q. The electron thus
can be approximately described by a single plane wave (nearly free electron approximation). The
nearly free electron approximation cannot be employed to describe electrons in real solids.
However, it produces results that are similar to those of more elaborate models of electrons
[Ash76].

1.2. Correlated Electrons

Electrons in insulators and metals are generally well described within the independent elec-
tron picture, which was outlined in Sec. 1.1. The same, however, is not true for electrons in
transition metals. Transition metals possess a (hybridized) conduction band and in addition an
incompletely filled d−band [Ash76, Mot64]. It is mostly because of the d−band electrons that
transition metals exhibit their characteristic properties [Hub63]. Due to the narrow confine-
ment of electrons in d−orbitals, two electrons that occupy the same d−orbital with opposite
spins experience an enhanced Coulomb repulsion [Vol12]. As a consequence, the motion of the
d−electrons within a lattice is not independent anymore but rather governed by correlations.
Transition metals, like any other material with strongly-correlated electrons, are therefore of-
ten termed strongly-correlated materials. This Section introduces two commonly used models to
describe electrons in strongly-correlated materials. These two models are the Fermi-Hubbard
model [Hub63] and the spin−1/2 Heisenberg XXZ lattice model [Bis17].

1.2.1. The Fermi-Hubbard Model

We consider a solid with a simple cubic lattice geometry and with one atom per lattice site.
Each atom contributes an atomic s−orbital, which carries up to two electrons of opposite
spins. The solid that is formed by the atoms thus possesses a single energy band, namely
an s−band. Two electrons of the s−band interact strongest with each other when they share
a common lattice site. We thus consider only on-site interaction in the following. This ap-
proximation ignores the long-range character of the Coulomb interaction and thereby neglects
intersite interactions. Hence, it represents a crucial simplification of the real state of affairs.
The interaction energy of two electrons on the same lattice site is denoted as on-site interaction
energy U . If U is positive (U > 0), the on-site interaction corresponds to repulsive Coulomb
interaction. In the opposite case with U < 0 the on-site interaction is attractive.

Since the atomic s−orbitals overlap with each other and form an energy band, electrons
can tunnel from one lattice site to another site. Tunneling between two sites i and j is specified
by the hopping matrix element tij . In the simplest case, tunneling of electrons takes place only
between nearest-neighbor lattice sites. If the hopping matrix element tij is equal for all six
nearest neighbors j of each site i, all matrix elements tij take the same value tij = −t with
t ≥ 0.

The Hamiltonian that describes the behavior of the s−band electrons, considering only
on-site interaction and only nearest-neighbor tunneling, reads [Hub63]

ĤFH = −t
∑
〈i,j〉

∑
σ

(
ĉ†iσ ĉjσ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓. (1.25)
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1. Electrons in Solids

The operator ĉiσ (ĉ†iσ) in Eq. (1.25) annihilates (creates) an electron with spin σ ∈ {↑, ↓} at site i
and therefore is called annihilation (creation) operator. The product of the two operators ĉiσ and
ĉ†iσ is equivalent to the number operator n̂iσ, which counts the electrons in spin state σ on site i
and which is given by [Tar18]

n̂iσ = ĉ†iσ ĉiσ. (1.26)

The first sum in Eq. (1.25) is taken over all nearest-neighbor pairs 〈i, j〉 and spin states σ and
represents the kinetic energy of the electrons. The second term corresponds to the interaction
energy of the electrons and arises due to multiply occupied lattice sites. It is proportional to
the on-site interaction energy U . By setting t to zero, the Hamiltonian ĤFH reproduces the
atomic limit in which electrons are fully localized to the lattice sites. For U = 0, the electrons
enter the regime of a non-interacting electron gas.

The Hamiltonian ĤFH in Eq. (1.25) is the Fermi-Hubbard Hamiltonian. It is one of the sim-
plest extensions of the independent electron approximation and yet is exactly solvable only in
certain cases as for example in one dimension [Tar18, Lie68]. The Fermi-Hubbard Hamilto-
nian was first derived for strongly-correlated electrons in a non-degenerate s−band [Hub63,
Hub64b] and was then generalized to electrons in degenerate d−bands [Hub64a]. It describes
the competition between kinetic energy and on-site interaction energy of s−band electrons on
a lattice.

If the number of s−band electrons equals the number of lattice sites, each lattice site is
occupied on average by one electron and the s−band is half-filled. At half filling and for strong
repulsive interactions (U � |t|) the energy penalty U for double occupation of a lattice site is
larger than the gain t in kinetic energy due to tunneling. Consequently, double occupancy
is suppressed and each lattice site contains precisely one electron. Since in this situation the
motion of the electrons is essentially frozen, the electrons are in an insulating state (Mott-
insulating state).4 The Fermi-Hubbard model predicts several other phases to occur at finite
temperatures (T > 0). As the temperature is increased, the Mott-insulator state, for instance,
connects to a metallic state via an insulator-to-metal transition. An overview of the different
phases of the Fermi-Hubbard model can be found in Ref. [Tar18].

1.2.2. The Spin−1/2 Heisenberg XXZ Lattice Model

The Fermi-Hubbard model at half-filling, strong repulsive interactions (U � |t|), and temper-
ature T with kBT � U , where kB is the Boltzmann constant, exhibits a Mott-insulator ground
state with precisely one electron per lattice site, similar to the case for T = 0 [Tar18]. In the
Mott-insulator state the motional degrees of freedom of the electrons (sometimes also named
charge degree of freedom) are essentially frozen out, however, the spin degree of freedom of the
electrons (σ ∈ {↑, ↓}) is still active. The Fermi-Hubbard Hamiltonian ĤFH in Eq. (1.25) under
the previous conditions can be transformed into an effective Hamiltonian that contains only
spin operators. Introducing the vector spin operator Ŝi that acts on the spin state of an electron at

4Band theory predicts that all materials with a partially filled conduction band (here the s−band) are metals. The
occurence of the Mott-insulator state therefore cannot be understood within band theory, which is based on
independent electrons and thus not applicable here.
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U

1
2

Figure 1.1.: Spin exchange. Two electrons with opposite spins (black arrows) at different lattice
sites (dashed circles) can undergo exchange processes. (1) In the course of an exchange process,
one of the two involved electrons tunnels to the lattice site of the other electron, resulting in an
empty site and a doubly occupied site. This intermediate state is a virtual state whose energy
is increased by the on-site interaction U . (2) Subsequently, the second electron tunnels to the
original lattice site of the first electron. In the final state (lower right part of the figure), the two
electrons appear to have exchanged their spins.

lattice site i, the effective Hamiltonian can be written, apart from a constant, as [Tar18, Aue94]

ĤHB = Jex
∑
〈i,j〉

Ŝi · Ŝj , (1.27)

where the summation is over all pairs 〈i, j〉 of nearest-neighbor lattice sites. Mathematically,
the Hamiltonian ĤHB describes a lattice of spins that interact with each other. The strength
of the effective spin-spin interaction is given by the coupling constant Jex. If Jex is negative
(Jex < 0), adjacent spins can minimize their energy by aligning themselves parallel to each
other (ferromagnetic spin order). If Jex is positive (Jex > 0), antiparallel alignment of the spins
(antiferromagnetic spin order) is energetically favorable. The Hamiltonian ĤHB in Eq. (1.27) is
known as the Heisenberg Hamiltonian.

Physically, the effective spin-spin interaction is a result of processes in which pairs of
electrons swap their positions [Tar18, Aue94]. For t � U , an electron at lattice site i can
tunnel to a nearest-neighbor lattice site j if the spins of the electrons at the two lattice sites are
antiparallel. The tunneling electrons leaves behind an empty site and leads to an intermediate
(virtual) state with double occupancy on the other site [Tar18]. Otherwise, if the two electrons
have parallel spins, Pauli’s exclusion principle forbids tunneling. The electron that originally
occupied lattice site j subsequently tunnels to lattice site i, leading to a spin configuration
with two swapped spins. This process is thus denoted as spin exchange.5 Figure 1.1 illustrates
the process of spin exchange between two electrons on a lattice. Since only electrons with
opposite spins can lower their energy through spin exchange, spin exchange influences the
mutual alignment of the electron spins and leads to an antiferromagnetic ordering [Aue94].

In the present Section, the Heisenberg Hamiltonian ĤHB in Eq. (1.27) arose as an effective
Hamiltonian from the Fermi-Hubbard Hamiltonian ĤFH. It is therefore possible to express
the coupling constant Jex through the parameters of the Fermi-Hubbard Hamiltonian. The

5In some materials tunneling of electrons takes place via an intermediate atom (superexchange), which can be
treated in a similar fashion [Aue94].
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1. Electrons in Solids

coupling constant Jex in terms of the hopping matrix element t and on-site interaction U reads
[Tar18, Aue94]

Jex =
4t2

U
. (1.28)

For half-filling and strong repulsive interactions, Jex is positive and hence adjacent spins prefer
antiferromagnetic spin order. Since the alternation of spin direction continues across the lattice,
the ground state of the Hamiltonian ĤHB for Jex > 0 exhibits an antiferromagnetic and long-
range spin order (Néel order). The Néel order is preserved for temperatures T well below some
critical temperature TN given by [Tar18]

TN ∼
Jex

kB
. (1.29)

For temperatures much higher than TN, T � TN, thermal fluctuations destroy the Néel or-
der, leading to a state of uncorrelated spins with no spin order (paramagnetic state) [Tar18].
The temperature TN is known as the Néel temperature. Unlike the 3D Heisenberg model, the
Heisenberg model in 2D cannot exhibit long-range spin order for any temperature except for
T = 0 as stated by the Mermin-Wagner-Hohenberg theorem [Mer66].

We now consider the Heisenberg model for spin−1/2 particles with antiferromagnetic
spin interaction on a 2D square lattice. The lattice plane is assumed to coincide with the
xy−plane. The dot product in Eq. (1.27) can be written in terms of the Cartesian vector com-
ponents of the vector spin operator Ŝi, namely Ŝxi , Ŝyi , and Ŝzi . The vector components obey
the usual commutation relations [Mes65b]

[Ŝk, Ŝl] = i~εklmŜm, (1.30)

with k, l,m ∈ {x, y, z} and εklm being the Levi-Civita symbol. We then obtain the expression

ĤHB = Jex
∑
〈i,j〉

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j

)
. (1.31)

From Eq. (1.31) it becomes apparent that Jex is chosen to be identical for all three spin com-
ponents (isotropic Heisenberg Hamiltonian). A more general treatment has to take into account
unequal couplings between the spin components. In the most general case, spin coupling is
characterized by three different coupling constants Jx, Jy, and Jz . Equation (1.31) must then
be replaced by

ĤXYZ =
∑
〈i,j〉

(
JxŜ

x
i Ŝ

x
j + JyŜ

y
i Ŝ

y
j + JzŜ

z
i Ŝ

z
j

)
. (1.32)

The Hamiltonian ĤXYZ is known as the Heisenberg XYZ Hamiltonian. For Jx=Jy=J⊥ and
J⊥ 6=Jz , Eq. (1.32) becomes

ĤXXZ =
∑
〈i,j〉

(
J⊥

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)
+ JzŜ

z
i Ŝ

z
j

)
(1.33)
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and the Heisenberg XXZ Hamiltonian is obtained [Man91]. When J⊥ and Jz are varied in
magnitude, the Hamiltonian ĤXXZ exhibits distinct ground states that give rise to different
phases. In order to indicate the parameter ranges for these phases, we define the parameter
λaniso = Jz/J⊥ and rewrite the Hamiltonian ĤXXZ as [Al 04]

ĤXXZ = J⊥
∑
〈i,j〉

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + λanisoŜ

z
i Ŝ

z
j

)
. (1.34)

The parameter λaniso describes the anisotropy of the spin-spin coupling. If λaniso > 1, the spins
are predicted to align in z−direction with antiferromagnetic order (Ising-like phase). When
λaniso is within the range −1 < λaniso < 1, the spins are expected to lie within the xy−plane
(planar-like phase). For λaniso < −1, the spins are believed to align parallel to each other forming
a ferromagnetic phase [Al 04, Bis17, Bis98].

One gains further insight into the spin−1/2 Heisenberg XXZ Hamiltonian by defining the
raising and lowering spin operators Ŝ+ and Ŝ−, respectively, as [Mes65b]

Ŝ+ = Ŝx + iŜy, (1.35)

Ŝ− = Ŝx − iŜy. (1.36)

The raising and lowering spin operators, Ŝ+ and Ŝ−, allow one to rewrite Eq. (1.33) in the
form [Wal15]

ĤXXZ =
∑
〈i,j〉

(
J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
+ JzŜ

z
i Ŝ

z
j

)
. (1.37)

The first term in Eq. (1.37) is proportional to J⊥. It causes combined spin flipping of opposite
spins−1/2 at lattice sites i and j and thus leads to spin exchange. Spin-exchange processes
preserve the total magnetization of the lattice spins. In contrast, the last term maintains the
orientation of the individual spins.

The antiferromagnetic spin−1/2 Heisenberg XXZ Hamiltonian on a 2D square lattice is
assumed to describe the electrons of the CuO2 planes in cuprate high-temperature supercon-
ductors [Man91]. It has no exact solutions [Bis98]. Quantum simulation with ultracold quan-
tum gases is an ideal tool to compute solutions for the antiferromagnetic spin−1/2 Heisenberg
XXZ Hamiltonian on a 2D square lattice.
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2. Ultracold Atoms in Optical Lattices
The K−Cs apparatus will employ ultracold atoms and molecules in optical lattices to study
model Hamiltonians of solid state physics in future experiments. In this Thesis, we are con-
cerned with bosonic quantum gases of atoms and molecules. To form the basis for the fol-
lowing Chapters, we review the basics of ultracold, bosonic atoms and their interactions in
the present Chapter. Moreover, we introduce the fundamentals of optical lattices and discuss
the implementation of a paradigm Hamiltonian, the Bose-Hubbard Hamiltonian, in ultracold,
bosonic atom systems in optical lattices. A review of the physics of ultracold atoms in optical
lattices is given e.g. in Refs. [Mor06, Blo08].

2.1. Ultracold Atoms and Interactions

A gas of Natom atoms with atom mass m within a volume Vgas has an average particle density
natom of

natom =
Natom

Vgas
(2.1)

and thus a mean interparticle separation d̄ of [Ket99]

d̄ =
1

3
√
natom

. (2.2)

If the mean interparticle separation d̄ is on the same order of magnitude or shorter than the
thermal de Broglie wavelength λdB of the atoms with [Ket99]

λdB =

√
2π~2

mkBT
, (2.3)

the atom gas is dominated by quantum effects (quantum gas regime). Atom gases that are cre-
ated in typical quantum gas experiments have particle densities on the order of natom ≈ 1012

cm−3. Hence, to enter the quantum gas regime, these gases need to be cooled down to temper-
atures in the nanokelvin regime and are then called ultracold quantum gases. At these tempera-
tures and particle densities the phase-space density D of the atomic gas with [Met99]

D = natomλ
3
dB (2.4)

is on the order of 1 or larger [Ket99].
A single cooling technique is usually incapable of reaching the desired low temperatures

for ultracold atomic quantum gases. Instead, a sequence of different cooling and evaporation
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steps has to be applied to the atoms [Ket99]. These steps make use of well-established ex-
perimental techniques for trapping and cooling or evaporation of atoms. Many of these tech-
niques require laser beams, often prepared in particular configurations, and magnetic fields.
An overview of the experimental techniques for trapping and cooling of atoms is given in Ref.
[Met99].

In the past decades, quantum gases of ultracold atoms have been achieved with bosonic
atoms [And95] as well as with fermionic atoms [DeM99]. When cooled into the quantum gas
regime, a gas of bosonic atoms undergoes a phase transition from a classical gas into a Bose-
Einstein condensate (BEC) [Ket99]. The physics of Bose-Einstein condensation in atomic gases
is discussed in Ref. [Pet08]. In contrast, fermionic atoms at ultracold temperatures form a
degenerate Fermi gas [Ing07]. To shield ultracold quantum gases from the atmospheric environ-
ment, experiments with ultracold atoms are performed inside of an ultra-high vacuum (UHV)
apparatus.

The thermodynamically stable configuration of most known atoms (and molecules) at
nanokelvin temperatures is a solid [Pet08].1 Hence, ultracold quantum gases are thermody-
namically not stable and suffer from relaxation processes. The relaxation processes are caused
by collisions of three atoms, where two atoms form a molecule after the collision and the third
atom carries away the released binding energy [Fed96]. These collisions are known as inelastic
three-body collisions and lead to solidification. As long as the experiment on the quantum gas
is performed on a shorter timescale than the three-body collisions occur, three-body collisions
are typically of no concern.

Besides inelastic three-body collisions, atoms in ultracold gases can also interact via pair-
wise collisions. Two-body collisions in which the total kinetic energy is conserved are denoted
as elastic two-body collisions. At ultralow temperatures, elastic two-body collisions within a
bosonic quantum gas can occur only for atoms that have zero relative angular momentum
(s-wave collisions) [Jer14]. The cross-section for elastic s-wave collisions is then determined
through a single parameter, the so-called s-wave scattering length ascatt [Lah09, Jer14]. If the in-
terparticle interaction of the atoms within the gas is dominated by two-body collisions and if
scattering is limited to s-wave scattering, the effective interparticle interaction potential can be
written as [Lah09, Jer14]

Vcontact(~R) =
4π~2ascatt

m
δ(~R), (2.5)

where δ(~R) is the Dirac delta function and ~R is the relative position vector of the atoms. The
contact interaction potential Vcontact(~R) is isotropic and, since it depends only on the particle den-
sity, short-range [Jer14, Lah09]. The s-wave scattering length ascatt can be controlled through
an external magnetic field and depends on the magnetic field strength B as [Chi10]

ascatt(B) = abg

(
1− ∆res

B −Bres

)
. (2.6)

For B → Bres the scattering length ascatt diverges (ascatt → ±∞). The divergence of the scatter-
ing length ascatt arises due to a magnetic Feshbach resonance [Chi10]. The center of the Feshbach
resonance is at B = Bres and the resonance width is ∆res. The off-resonant value of ascatt is
given by the background scattering length abg, which can be positive as well as negative. For

1The only exception is helium, which forms a liquid at temperatures down to zero kelvin [Pet08, Cor02, Ket99].
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B = Bres + ∆res, the scattering length ascatt has a zero-crossing. By tuning the scattering length
ascatt close to a magnetic Feshbach resonance, the sign as well as the strength of the contact
interaction in Eq. (2.5) can be controlled. This tunability of the scattering length ascatt enables
the realization and study of non-interacting (ascatt = 0), weakly interacting as well as strongly
interacting quantum gases in both the attractive (ascatt < 0) and repulsive (ascatt > 0) regime.

2.2. Optical Lattices

In order to create optical lattices for ultracold atoms and molecules, the K−Cs apparatus will
employ interfering laser beams. This Section therefore recaps basic characteristics of Gaussian
laser beams and sums up fundamentals of optical lattices.

2.2.1. Gaussian Beams and Optical Potentials

Laser beams in their simplest form can be approximated by Gaussian beams [Sie86]. A Gaus-
sian laser beam with laser wavelength λ that propagates in z−direction and has a focus at the
position z = 0 has an intensity distribution IL(x, y, z), which is given by [Sie86]

IL(x, y, z) =
2P

πw2(z)
exp

[
−2(x2 + y2)

w2(z)

]
. (2.7)

Here, P is the total laser power andw(z) is the transverse distance from the optical axis at axial
position z at which the laser intensity has decreased to 1/e2 ≈ 0.135 times the value IL(0, 0, z)
on the optical axis. Thus, w(z) characterizes the radial width (beam width) of the Gaussian
beam at axial position z and is given by [Sie86]

w(z) = w0

√
1 +

(
z

zR

)2

. (2.8)

The beam width varies along the propagation axis and is smallest in the focal plane of the
Gaussian beam, where it is denoted as beam waist w0. Propagation of a Gaussian laser beam is
fully determined by the beam waist w0 and the parameter zR defined as [Sie86]

zR =
πw2

0

λ
. (2.9)

The parameter zR is also known as Rayleigh length.
An atom placed at position ~r within a Gaussian laser beam interacts with the local electric

field ~F (~r, t) = ~EF0(~r) · (exp(−iωLt) + c.c.)/2 of the laser, where ~E is the unit field vector, F0(~r)
is the local electric field amplitude, and ωL is the laser angular frequency. The interaction of
the atom with the laser field gives rise to an oscillating induced electric dipole moment ~p of
the atom. The induced dipole moment ~p has potential energy −~p · ~F/2 within the laser electric
field. For this reason and because of the rapid laser oscillation the atom experiences a position-
dependent, time-averaged optical dipole potential Vdip(~r) with [Gri00]

Vdip(~r) = −1

2
〈~p · ~F 〉 = − 1

cε0
Re(α)IL(~r). (2.10)

23



2. Ultracold Atoms in Optical Lattices

The angular brackets 〈·〉 in Eq. (2.10) symbolize averaging over the oscillation of the laser field.
The constants c and ε0 in Eq. (2.10) denote the vacuum speed of light and the permittivity of free
space and α is the atomic polarizability, of which only the real part Re(α) finds entrance into Eq.
(2.10). Here, α is assumed to be a scalar for the sake of simplicity.2 In arriving at the right side
of Eq. (2.10) we made use of the relation between the time-averaged laser intensity IL(~r) and the
laser field amplitude F0(~r) [Gri00]

IL(~r) =
1

2
cε0 |F0(~r)|2 . (2.11)

From Eq. (2.10) we see that the optical dipole potential Vdip(~r) depends linearly on the intensity
of the laser light. For Re(α) > 0, the potential energy of the atom in regions with higher
laser intensity IL(x, y, z) is less and thus the atom is attracted towards regions with maximum
intensity. In the opposite case, Re(α) < 0, the atom is pulled towards regions with minimum
intensity.

The optical dipole potential Vdip(~r) that an atom in its internal ground state experiences
within a Gaussian laser beam is obtained by inserting Eq. (2.7) into Eq. (2.10). When the
laser frequency ωL is tuned above the transition frequency ωA of the strongest ground-state
transition of the atom, i.e. ωL > ωA, the detuning ∆ = ωL − ωA is positive (blue detuning). In the
opposite case, ωL < ωA and ∆ < 0, the laser light is said to be red detuned. In the remainder of
this Thesis, we consider only optical dipole potentials that originate from red-detuned lasers.
For a ground-state atom within a red-detuned Gaussian laser beam, Re(α) is positive and thus
the focus of the Gaussian laser beam acts as an optical dipole trap [Gri00, Met99].

Optical dipole traps are a commonly used experimental tool in ultracold atom experi-
ments to trap atoms. In order to reduce spontaneous scattering of photons from the dipole trap
laser beam by the trapped atoms, the frequency ωL of the dipole trap laser beam is typically
chosen many line widths off resonance (far-off-resonance optical dipole trap). The trap potential
is then nearly conservative and gives rise to a dipole force ~Fdip(~r) that can be derived through
[Gri00]

~Fdip(~r) = −~∇Vdip(~r). (2.12)

Nowadays, far-off-resonance optical dipole traps (FORTs) in alkali quantum gas experiments
have beam waists w0 of tens to hundreds micrometers. To trap ultracold alkali atoms in FORTs
of these sizes, the laser beam is focused down either by a single lens or a combination of lenses
and a laser output power of up to several hundreds of watts is required. Since commercial
high power lasers exist only at specific wavelengths, laser light at 1064 nm is typically used
to realize FORTs.3 Laser light at this wavelength is hundreds of nanometers away from the
energetically lowest ground-state transitions in alkali atoms. The resulting dipole potential
Vdip(~r) can therefore be seen as quasi-static.

2.2.2. Periodic Optical Potentials

The spatial dependence of an optical potential Vdip(~r) experienced by an atom is determined
by the intensity distribution IL(~r) of the underlying laser field as can be seen from Eq. (2.10).

2A more thorough treatment of the subject of atomic polarizabilities follows in Ch. 4.
3In the early days of optical dipole traps for neutral atoms, FORTs for alkali atoms were realized at laser wave-

lengths other than 1064 nm. See e.g. Refs. [Mil93, Tak96].
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z

+a0−a

V0,1D

ωL ωL

Figure 2.1.: One-dimensional optical lattice potential. A stationary 1D optical lattice can be
created by two collinear, counter-propagating laser beams (red arrows), which have frequen-
cies ωL. The resulting optical potential (black line) has a squared cosinusoidal profile along
the optical axis. The potential minima are equidistant with lattice constant a as their mutual
spacing. Adjacent potential minima are separated from each other by a potential barrier of
height V0,1D.

By producing light fields with tailored intensity distributions it is thus possible to create optical
potentials of different geometries and in particular optical lattice potentials. The simplest form
of an optical lattice potential is realized by two counter-propagating, collinear laser beams. If
both laser beams are linearly polarized and have the same polarization axis, the electric fields
of the two overlapping laser beams interfere. The interference leads to a modulation of the
laser intensity along the common optical axis of the two lasers.

To obtain an analytical expression for the resulting optical lattice potential, we assume
that the two laser beams are Gaussian beams with intensity distributions IL(x, y, z) of the form
given in Eq. (2.7). The Gaussian beams have laser frequencies ωL,1 = ckL,1 and ωL,2 = ckL,2
with ωL,1 ≈ ωL,2, where kL,1 = 2π/λL,1 and kL,2 = 2π/λL,2 are the corresponding wave numbers.
We consider the case that the foci of the two Gaussian beams coincide at z = 0, that the beam
waists w0,L1 and w0,L2 are of equal size (w0,L1 = w0,L2 = w0), and that the laser beam powers
PL,1 and PL,2 are identical (PL,1 = PL,2 = P ). The optical lattice potential around the common
focus (|z| � w0) can then be approximated by

V1D(x, y, z, t) ≈ −V0,1D · exp

[
−

2
(
x2 + y2

)
w2(z)

]
· cos2

[
(kL,1 + kL,2)

2
z +

(ωL,2 − ωL,1)

2
t

]
, (2.13)

where the constant V0,1D is an abbreviation of the following conglomeration of constant pa-
rameters

V0,1D =
8P

cε0πw2
0

· Re(α). (2.14)

In the case that the two laser beams differ in their frequencies by ∆ωL = ωL,1 − ωL,2 such that
λL,1 ≈ λL,2 ≈ λL, the optical lattice potential V1D(x, y, z, t) is time-dependent and moves along
the z−axis at a velocity v given through [Sch06]
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(a) (b) (c)

Figure 2.2.: Optical lattices. Three examples for the realization of optical lattices and
the equipotential surfaces of the associated lattice potentials. (a) Two collinear, counter-
propagating laser beams (blue arrows) create a 1D optical lattice of pancake-shaped traps. Su-
perimposition of (b) one or (c) two further mutually orthogonal retro-reflected laser beam(s)
forms a 2D or 3D optical lattice, respectively. The 2D optical lattice corresponds to a planar
lattice of cigar-shaped traps, while the 3D lattice forms a crystal of spherical traps.

v = λL
∆ωL

4π
. (2.15)

If the two laser frequencies are equal, i.e. ωL,1 = ωL,2 = ωL and thus kL,1 = kL,2 = kL, the lattice
potential V1D(x, y, z, t) in Eq. (2.13) is stationary and simplifies to

V1D(x, y, z) ≈ −V0,1D · exp

[
−2(x2 + y2)

w2(z)

]
· cos2 [kLz] . (2.16)

The lattice potential V1D(x, y, z) in Eq. (2.16) is governed in transverse x− and y−direction
by the Gaussian intensity envelope of the lattice laser beams whereas it is dictated along the
z−axis mostly by the standing wave interference pattern. Figure 2.1 depicts the lattice poten-
tial V1D(~r) on the z−axis for |z| � w0. The potential V1D(~r) possesses a series of potential
minima along the z−axis within which atoms can be trapped. The potential minima, called
lattice sites, have a mutual distance of ∆z = λL/2 and thus are equidistant. In analogy to the
lattice constant a of a solid in Sec. 1.1, the separation ∆z of the lattice sites is denoted as lattice
spacing and also labeled with the symbol a. The height of the potential barrier between two
successive lattice sites is the lattice depth V0,1D. It is chosen to be positive here. The lattice depth
V0,1D depends on the laser power P as well as the detuning ∆ of the laser light (through the
polarizability α), as can be seen from Eq. (2.14). Because of its spatial periodicity, V1D(~r) is
denoted as one-dimensional (1D) optical lattice potential.

Optical lattice potentials that are periodic in more than one direction can be achieved
by superimposing multiple laser beams. The most straightforward approach towards higher-
dimensional optical lattices is to intersect mutually orthogonal, retro-reflected laser beams.
Each retro-reflected laser beam creates a 1D optical lattice. By shifting the laser frequencies of
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the 1D optical lattices relative to each other, interferences between the lattice laser beams are
time-averaged to zero. The emerging optical lattice potential at the common intersection point
of the retro-reflected laser beams is then simply the sum of 1D optical lattice potentials. Two or-
thogonal, retro-reflected laser beams create in this way a 2D array of anisotropic, cigar-shaped
traps (2D optical lattice). In contrast, a 1D lattice corresponds to a stack of pancake-shaped
traps with tight confinement in axial direction and weaker confinement in radial direction.
Adding a third retro-reflected laser beam at a right angle to the 2D lattice creates a 3D crystal
of spherical traps. Figure 2.2 depicts the laser configurations for the three mentioned optical
lattices and shows the equipotential surfaces of the associated lattice potentials.

A 3D optical lattice with simple cubic geometry is obtained when the three retro-reflected
laser beams have similar laser frequencies (ωL,1 ≈ ωL,2 ≈ ωL,3). If the beam powers and beam
waists are of equal magnitude and size for all three lattice laser beams, the optical potential
around the common intersection point can be approximated by

V3D(x, y, z) ≈ −V0

[
cos2 (kLx) + cos2 (kLy) + cos2 (kLz)

]
+

1

2
mω2

ext
(
x2 + y2 + z2

)
. (2.17)

The optical lattice potential V3D(x, y, z) consists of two contributions. The first term in Eq.
(2.17) results from the three optical standing waves in x−, y−, and z−direction and produces
a uniform, squared cosinusoidal lattice potential in each of these directions. The coefficient
V0 denotes the lattice depth of the 3D optical lattice. The last term describes a 3D harmonic
trapping potential, which is characterized by the external harmonic trapping frequency ωext. It
results from the transverse intensity profile of the Gaussian beams (see Eq. (2.7)). The har-
monic potential represents an external confinement and causes a site-dependent energy offset.
To simplify the further discussion, we neglect the external harmonic confinement, i.e. ωext = 0,
and thus assume a uniform lattice potential of the form

V u
3D(~r) = −V0

[
cos2 (kLx) + cos2 (kLy) + cos2 (kLz)

]
. (2.18)

Independent experimental control of the lattice laser beams that form the 3D optical lat-
tice allows one to dynamically modify the optical lattice in experiments. By ramping down
the power of one (two) lattice beam(s), a 3D optical lattice is transfered into a 2D (1D) optical
lattice. Optical lattices with geometries other than 3D simple cubic geometry can be created by
varying the number of intersecting lattice laser beams, by altering their spatial arrangement or
wavelengths or by adjusting the polarizations and mutual phases of the lasers [Pet94, Win13].
Among the optical lattice geometries that have been realized in the past are triangular [Bec10],
honeycomb [Tar12], checkerboard [Wir10], as well as Kagome, 1D stripe and decorated tri-
angular lattice geometries [Jo12]. An overview of systems that can be studied with ultracold
atoms in optical lattices can be found e.g. in Ref. [Lew07].

2.2.3. Harmonic Approximation

A natural energy scale for ultracold atoms in optical lattices is the recoil energy Erec an atom
gains when it scatters a photon of the lattice laser light. It is thus common practice to express
the depth V0 of an optical lattice in units of the lattice recoil energy Erec given by [Blo08]

Erec =
h2

2mλ2
L
. (2.19)
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For lattice depths V0 much larger than Erec, i.e. V0 � Erec, the optical lattice potential V u
3D(~r)

in Eq. (2.18) can be approximated around the center ~Ri of each lattice site i by a harmonic
potential

Vsite(~r − ~Ri) =
1

2
mω2

site

(
~r − ~Ri

)2
. (2.20)

Equation (2.20) neglects the energy offset due to the finite depth of the lattice potential. The
on-site potential Vsite(~r − ~Ri) corresponds to that of an isotropic 3D harmonic oscillator with
trapping frequency ωsite. The on-site trapping frequency ωsite is given by [Blo13]

ωsite =
Erec

~

√
4V0

Erec
. (2.21)

For increasing lattice depths V0, the on-site confinement of a trapped atom becomes stiffer as
can be seen from Eq. (2.21).

Within the harmonic approximation of deep lattices (V0 � Erec), the motion of an atom
at a lattice site is well described by the motion of a quantized harmonic oscillator. The mo-
tional eigenstates |Nx, Ny, Nz〉 of the trapped atom are characterized by three vibrational quan-
tum numbers Nx, Ny, and Nz for the three lattice axes with {Nx, Ny, Nz} ∈ N. The motional
eigenstates have equidistant eigenenergies [Mes65a]

ENx,Ny ,Nz =

(
Nx +Ny +Nz +

3

2

)
~ωsite. (2.22)

Except for the vibrational ground state (Nx = Ny = Nz = 0), all excited harmonic oscillator
states are degenerate. Due to the finite depth V0 of optical lattice potentials, each lattice site can
host only a limited number of bound vibrational states. The highest-lying, bound vibrational
states of a lattice site in the harmonic approximation, for which the eigenenergy ENx,Ny ,Nz is
still smaller than the lattice depth V0, have an energy

Emax = (Nmax + 3/2) ~ωsite, (2.23)

where Nmax, for any of these states, is the sum of all three vibrational quantum numbers
Nx, Ny, and Nz . The integer Nmax can be calculated from the lattice parameters V0, ωsite, and
λL through

Nmax =

⌊
V0

~ωsite
− 3

2

⌋
=

⌊
mωsite

2~

(
λL

2π

)2

− 3

2

⌋
. (2.24)

The brackets b−c in Eq. (2.24) denote the floor function. With larger lattice depth V0 atoms
in an optical lattice are increasingly confined to the centers of the lattice sites, where the har-
monic approximation is better. Given the anharmonicity of the real on-site lattice potential,
the harmonic approximation is less accurate for excited oscillator states.
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2.3. Ultracold Bosonic Atoms in Optical Lattices

The mathematical expressions given in Sec. 1.1 to describe independent electrons within a
solid are general solutions of the single-particle Schrödinger equation in Eq. (1.4) for a peri-
odic potential. The same equations can be used to describe independent ultracold atoms in
optical lattices. Atoms within an optical lattice therefore exhibit an energy band structure. If
the energies associated with an atomic sample in an optical lattice, e.g. thermal energy and
interaction energy, are much smaller than the energy gap between the lowest and first excited
energy band, the atoms can be loaded solely into the lowest energy band (band index n = 0)
[Geo13, Mor07]. For energetical reasons, excitations to higher energy bands cannot occur un-
der these conditions and thus higher bands can be discarded [Dut15b]. In the following, we
assume atoms in the energetically lowest energy band of an optical lattice. This assumption
can be well fulfilled in todays quantum gas experiments. Based on the above mentioned simi-
larities between atoms in optical lattices and electrons in solids, a bosonic version of the Fermi-
Hubbard Hamiltonian in Eq. (1.25) can be derived to describe strongly-correlated, ultracold,
bosonic atoms in optical lattices.

2.3.1. The Bose-Hubbard Model

We consider a 3D optical lattice with simple cubic geometry. For reasons of clarity, we assume
that the lattice potential associated with the optical lattice is that given in Eq. (2.18), namely
V u

3D(~r). If tunneling of atoms within the optical lattice is restricted to nearest-neighbor lattice
sites and interaction is limited to on-site interaction, the Hamiltonian that describes the atoms
in tight-binding approximation takes the form [Jak98]

ĤBH = −t
∑
〈i,j〉

(
b̂†i b̂j + h.c.

)
+
U

2

∑
i

n̂i (n̂i − 1) . (2.25)

Equation (2.25) neglects a constant energy offset that arises due to the particular choice of
the lattice potential V u

3D(~r). The first sum in Eq. (2.25) is over pairs 〈i, j〉 of nearest-neighbor
lattice sites and b̂i (b̂†i ) designates the annihilation (creation) operator of a bosonic atom at site i.
The hopping matrix element t characterizes nearest-neighbor tunneling of atoms and can be
calculated through [Jak98]

t =

∫
d~r w̃∗0(~r − ~Ri)

[
− ~2

2m
~∇2 + V u

3D(~r)

]
w̃0(~r − ~Rj), (2.26)

where the Wannier functions w̃0(~r) now relate to atoms. The first sum in Eq. (2.25) corresponds
to the kinetic energy of the atoms. The second term represents the total interaction energy of
the atoms. It contains the number operator n̂i for bosonic atoms at lattice site i and is defined
as n̂i = b̂†i b̂i. The total interaction energy is proportional to the on-site interaction energy U of
two atoms given by [Jak98]

U =
4πascatt~2

m

∫
d~r |w̃0(~r)|4 . (2.27)
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(a) (b)

Figure 2.3.: Ground state phases of the Bose-Hubbard model. (a) In the superfluid phase the
atom occupation of the lattice sites (dotted circles) follows a Poissonian distribution. (b) In the
Mott-insulator phase for unit filling each lattice site is occupied with precisely one atom.

Since the on-site interaction energy U depends on the s−wave scattering length ascatt, it can be
tuned in sign and strength by means of a magnetic Feshbach resonance.

The Hamilton operator ĤBH in Eq. (2.25) constitutes the so-called standard Bose-Hubbard
Hamiltonian. Its mathematical structure is similar to that of the Fermi-Hubbard Hamiltonian
ĤFH. The operators of the Bose-Hubbard Hamiltonian, however, do not account for the inter-
nal spin state of the atoms. Moreover, the Bose-Hubbard Hamiltonian allows for site occupa-
tion numbers that are larger than 2. The total on-site interaction of bosonic atoms at a single
lattice site i is therefore given by Un̂i (n̂i − 1) /2.

2.3.2. Ground States of the Bose-Hubbard Model

The competition between kinetic energy t and on-site interaction energy U leads to distinct
ground states of the Bose-Hubbard Hamiltonian ĤBH for different ratios U/t [Jak98]. We limit
the discussion of the ground states to the case of repulsive interactions (U > 0). The Bose-
Hubbard Hamiltonian with attractive interactions (U < 0) is discussed in Ref. [Jac05].

Weakly-Interacting Limit (t� U)

If the hopping matrix element t exceeds the on-site interaction energy U (t � U ), the many-
body ground state of the atoms is a superfluid [Jak98]. In the superfluid phase the atoms
can be described by a macroscopic wavefunction ΨSF(~r) with well defined phase φ [Win13].
Tunneling plays a dominant role in this regime. The gain t in kinetic energy that is associated
with tunneling of an atom is larger than the energy cost U for double occupancy. Thus, to
minimize energy, every atom aims to occupy each lattice site and spreads over the entire lattice.
In the limit of a large number of atoms within the optical lattice and a large number of lattice
sites (thermodynamic limit) and if additionally U → 0, the many-body ground state |ΨSF〉 of
the atoms can be approximated by a product of coherent states |ζ〉 for each lattice site i [Geo13,
Blo08]

|ΨSF〉 ≈
∏
i

|ζ〉i, (2.28)
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where the coherent states |ζ〉i are given through [Geo13]

|ζ〉i = e−|ζi|
2/2

∞∑
b=0

ζbi√
b!
|b〉. (2.29)

In Eq. (2.29), the states |b〉 are Fock states. The constant ζi defines the amplitude and phase of
the matter wave field at site i and is given through [Blo08]

ζi =
√
b̄ie

iφi , (2.30)

where b̄i = b̄ is the average atom number per lattice site. In the superfluid phase, φi is equal
for all lattice sites, i.e. φi = φ [Win13]. The probability P (b) to detect b atoms at a particular
site of the optical lattice follows a Poissonian distribution [Geo13]

P (b) = |〈b|ζ〉|2 =
e−|ζ|

2 |ζ|2b

b!
. (2.31)

Measurements of site atom numbers within the superfluid phase thus are subject to fluctua-
tions.

Strongly-Interacting Limit (U� t)

To understand the behavior of the atoms in the strongly-interacting regime, it is helpful to
consider the case in which the number of atoms within the optical lattice equals the number of
sites of the optical lattice, i.e. unit filling. For increasing U , atoms more and more repel each
other and therefore seek to minimize their wavefunction overlap. Tunneling to lattice sites
that contain already an atom is penalized with an energy cost U that is larger than the gain t in
kinetic energy. In a lattice with unit filling, atoms are thus homogeneously distributed across
the lattice with precisely one atom on every lattice site. Under these conditions, the atoms are
insulating. The ground state of the Bose-Hubbard Hamiltonian for U � t is therefore called
Mott-insulator. In the limit t → 0, the Mott-insulator many-body ground state for unit filling
can be approximately written as a product state of Fock states |b〉 for each lattice site i [Geo13]

|ΨMI〉 ≈
∏
i

|b〉i (2.32)

with |b〉i = |b=1〉i. Since Fock states are eigenstates of the number operator n̂ = b̂†b̂, the
atom number at each site i is well-defined and integer. Because of quantum fluctuations, the
phase φi of each site evolves randomly and hence the Mott-insulator ground state has no phase
coherence [Win13]. Figure 2.3 visualizes the number statistics of the site occupation for both
ground states of the Bose-Hubbard model.

2.3.3. Superfluid to Mott-Insulator Transition

The two ground states, superfluid and Mott-insulator, of the repulsive Bose-Hubbard Hamil-
tonian are connected to each other via a quantum-phase transition. The transition takes place
at a critical ratio (U/t)c. For a uniform, simple cubic 3D lattice potential with unit filling, this
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critical value is (U/t)c ≈ 35 [Jak98]. To access both ground states experimentally, it is necessary
to tune the ratio U/t. In experiments, one therefore varies U and t. By increasing the lattice
depth V0, the spatial extent of the Wannier functions w̃0(~r− ~Ri) decreases and thus the hopping
matrix element t in Eq. (2.26) gets smaller. A larger lattice depth V0 goes along with a larger

two-particle probability density
∣∣∣w̃0(~r − ~Ri)

∣∣∣4. This in turn causes a larger on-site interaction
energy U . To tune U independently of t, magnetic Feshbach resonances can be employed to
vary the scattering length ascatt (see Sec. 2.1).

If the optical lattice potential contains an external harmonic confinement as in Eq. (2.17),
a third energy contribution appears in the Bose-Hubbard Hamiltonian ĤBH in Eq. (2.25). The
new energy contribution accounts for the site-dependent energy offset due to the external har-
monic potential and participates in the competition between kinetic energy t and interaction
energy U . It is then possible that Mott-insulator and superfluid phases can coexist [Jak98].

The superfluid to Mott-insulator transition predicted by the Bose-Hubbard model was
observed with ultracold atoms in optical lattices first in 2002 [Gre02]. In this experiment, ul-
tracold 87Rb atoms were loaded into a simple cubic 3D optical lattice, which was generated by
852 nm-lattice laser light (lattice spacing a = 426 nm). In a series of experiments with increas-
ing lattice depth V0, the atoms were brought from a superfluid into a Mott-insulating state. To
observe the quantum phase transition, the atoms were released from the optical lattice and the
resulting matter wave interference pattern of the atoms was recorded. The transition from a
superfluid to a Mott-insulator became apparent through phase coherence loss, which led to
the destruction of the matter wave interference pattern.
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3. Fluorescence Quantum Gas
Microscopy

In order to detect and study ultracold atoms in optical lattices within the K−Cs apparatus,
we will use fluorescence quantum gas microscopy. This imaging technique was first exper-
imentally demonstrated in 2009 [Bak09, She10]. It yields information on the trapped atoms
that is complementary to the information obtained from the previously employed and still
widely used absorption imaging technique [Ket99]. We summarize central aspects of absorp-
tion imaging of ultracold atoms in optical lattices in this Chapter and contrast those to the
experimental capabilities of fluorescence quantum gas microscopy. The main purpose of this
Chapter, however, is to explain the experimental fundamentals of fluorescence quantum gas
microscopy and to give an overview of currently existing quantum gas apparatuses that em-
ploy this imaging technique. We furthermore point out experimental requirements for the
implementation of fluorescence quantum gas microscopy into a quantum gas apparatus. Fi-
nally, we explain the envisioned experimental sequence for performing fluorescence quantum
gas microscopy with the K−Cs apparatus. As our imaging system for fluorescence quantum
gas microscopy imposes constraints on the design of the K−Cs apparatus, we also summarize
its optical design.

3.1. Imaging Methods for Ultracold Atoms

Based on the point of time, at which a quantum gas within an optical lattice is imaged during
the experimental sequence, two imaging methods can be distinguished: imaging the quan-
tum gas while it is still confined within the optical lattice is known as in-situ imaging whereas
probing the quantum gas after it has been released from the lattice is called time-of-flight imag-
ing. Within the past, the main imaging technique to study atoms in optical lattices has been
absorption imaging, which can be performed as in-situ imaging or as time-of-flight imaging.

3.1.1. Absorption Imaging

Absorptive imaging of ultracold atoms utilizes a collimated laser beam that illuminates the
atom cloud under investigation. The imaging laser light is resonant with an optical transition
of the atoms and thus absorption through the atoms attenuates the incident beam intensity. If
the imaging beam propagates along the z−direction and has an incident intensity I0(x, y), the
transmitted intensity IT(x, y) behind the atom cloud is given by [Ket99]

IT(x, y) = I0(x, y) · e−OD(x,y). (3.1)

The function OD(x, y) in Eq. (3.1) is the optical density of the atom cloud and depends on
the atom density natom(x, y, z). If the intensity I0 of the imaging beam is much lower than
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camera

lens system

imaging beam

Figure 3.1.: Absorption imaging. A collimated, resonant laser beam (red) illuminates the
atomic cloud (blue circle). Through absorption the column-integrated density n̄atom(x, y) of
the cloud is imprinted on the intensity IT(x, y) of the transmitted laser beam. A lens system
projects the transmitted light onto a camera.

the saturation intensity Isat of the atomic imaging transition, the optical density OD(x, y) is
proportional to the resonant absorption cross-section σ0 of the imaged atoms. The optical density
can then be calculated through [Ket99, Jer14]

OD(x, y) = σ0

∫
natom(x, y, z) dz. (3.2)

Equation (3.1) together with Eq. (3.2) corresponds to Beer’s law. A charge-coupled device
(CCD) camera records the transmitted laser light. If I0(x, y) and σ0 are known, it is possible to
extract the column-integrated density n̄atom(x, y) =

∫
natom(x, y, z) dz from the absorption images

[Jer14]. The described detection technique is known as absorption imaging [Ket99]. Figure 3.1
depicts the conceptual optical setup for absorption imaging. The obtained column-integrated
density n̄atom(x, y) allows one to determine experimental parameters of the atomic sample,
e.g. its temperature or atom number. For that purpose a bimodal distribution is fitted to the
recorded column-integrated density n̄atom(x, y). The bimodal distribution is commonly chosen
to be the sum of a Gaussian distribution and a parabolic distribution. The former describes the
thermal fraction of the atoms within the imaged density profile and the latter captures the
fraction of the atoms that stems from a BEC [Ket99].

Absorption imaging of ultracold lattice gases is commonly executed after the quantum
gas has been released from the optical lattice. After being released, the atom cloud expands
freely for a variable time of flight tTOF, during which the atomic density natom(x, y, z) decreases.
For non-interacting gases (ascatt = 0), the case considered in the following, the expansion dur-
ing time of flight is ballistic [Jer14].

Sudden Release of Lattice Gas
If the ultracold atoms are released instantaneously out of the optical lattice, the expansion of
each Bloch wave Ψ

(n)
~q (~r) is determined by the plane wave contributions in Eq. (1.15) [Blo13].

The expanding atom cloud contains momenta ~~k with ~k = ~q, ~q ± ~G (for any reciprocal vector
~G), whose relative weights depend on the initial lattice depth V0 [Mor06]. For tTOF → ∞, but
practically already after an expansion time of a few milliseconds to about 100 ms, the atom dis-
tribution natom(~r) displays the in-trap momentum distribution of the atoms [Ger08].1 Atoms

1In practice, typical expansion times tTOF are chosen to be a few tens of milliseconds long.
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found at position ~r then relate to a free-particle momentum ~~k given through [Blo13]

~k =
m

~tTOF
~r. (3.3)

A sudden release of a lattice gas thus projects the in-trap quasi-momentum distribution onto
free-particle momenta. A subsequent absorption image of the expanded atom cloud hence
effectively measures the momentum density. In the case of an interacting gas (ascatt 6= 0), the
interactions can lead to deviations of the detected atom distribution from the in-trap momen-
tum distribution [Blo13, Jer14].

Adiabatic Release of Lattice Gas

If the lattice laser power is switched off slowly, i.e. such that the quasi-momentum ~~q of a Bloch
wave Ψ

(n)
~q (~r) is conserved, the atoms are released adiabatically from the optical lattice [Blo13].

Each Bloch wave Ψ
(n)
~q (~r) then connects adiabatically to a specific free-particle state with mo-

mentum ~~k in the nth Brillouin zone (adiabatic band mapping) [Blo13]. Adiabatic band mapping
of a lattice gas allows one to directly detect and measure atomic populations in different bands
of the lattice.

3.1.2. In-Situ Imaging

In-situ imaging of an ultracold lattice gas enables measurement of local observables, e.g. in-
trap density and entropy. For in-situ measurements one therefore aims at high spatial reso-
lution to resolve single lattice sites and high sensitivity to detect single atoms. In contrast,
time-of-flight measurements of ultracold atoms in optical lattices yield information on bulk
properties, e.g. momentum and quasi-momentum distribution, coherence, and correlations
[Blo13]. In-situ measurements therefore complement time-of-flight measurements.

High-resolution in-situ imaging of ultracold lattice gases was demonstrated via absorp-
tion imaging of 133Cs atoms in a 2D square lattice [Gem09]. However, neither single-site res-
olution nor single-atom sensitivity was achieved in this experiment. Single-site and single-
atom resolved in-situ imaging was achieved instead via fluorescence imaging; first using 133Cs
atoms within an optical lattice with a lattice spacing of 4.9 µm [Nel07], for which tunneling was
negligible and the emergence of Hubbard physics therefore suppressed, and later with 87Rb
atoms in square lattice monolayers with lattice spacings around a ∼ 600 nm, for which Hub-
bard physics could be observed [Bak09, She10].

In-situ fluorescence imaging of ultracold lattice gases with single-atom and single-site res-
olution, often referred to as fluorescence quantum gas microscopy, is based on keeping the atoms
at the lattice sites while optically exciting them to emit fluorescence photons. An imaging
system collects a fraction of the fluorescence photons and forms an image on a camera chip.
Given the background-free detection, the signal-to-noise ratio of fluorescence quantum gas
microscopy is better than for absorption imaging [Blo13, Wei14].
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Table 3.1.: Principal D line transitions in alkali atoms. The Table lists the transition wave-
lengths for the principal D1 and D2 lines in alkali atoms.

Element

Transition Li Na K Rb Cs

nS1/2 → nP1/2 671 nm 590 nm 770 nm 795 nm 895 nm

nS1/2 → nP3/2 671 nm 589 nm 767 nm 780 nm 852 nm

Ref. [Rad95] [Kraa] [Kra49] [Kra49] [Kra49]

3.2. Fundamentals of Fluorescence Quantum Gas Microscopy

Fluorescence quantum gas microscopy is performed in several quantum gas apparatuses world-
wide nowadays.2 These apparatuses employ fluorescence quantum gas microscopy to image
atoms in a single layer of an optical lattice. Due to the different atomic species and techni-
cal peculiarities that are used in these experiments, individualized experimental strategies are
used to perform fluorescence quantum gas microscopy. To understand the general concept of
fluorescence quantum gas microscopy, we outline a typical experimental sequence and thereby
discuss key aspects.

3.2.1. Preparation of an Atomic Lattice Monolayer

The experimental sequence begins with the preparation of a lattice monolayer of ultracold
atoms. To that end, an atomic BEC is created and held within an optical dipole trap. A vertical
1D optical lattice is then superimposed onto the BEC. By ramping up the laser power of the
vertical optical lattice the BEC is loaded from the dipole trap into the optical lattice. If the
spatial extent of the BEC within the dipole trap is larger than the lattice spacing of the vertical
lattice, atoms distribute over multiple sites. In the experiment detailed in Ref. [She10], for
instance, the lattice spacing was a = 532 nm and atoms populated 60 lattice sites with up to
2000 atoms per lattice site. When the lattice depth of the 1D lattice is chosen large enough, the
atoms in each lattice site form independent 2D atomic systems.

To prepare a lattice monolayer of atoms, the atoms from all vertical lattice sites except for
one site are removed. One strategy to empty the lattice sites is to apply a vertical magnetic
field gradient and a microwave pulse with tunable frequency. The microwave sweep transfers
atoms of individual lattice sites, except for one site, into a different hyperfine level, on which a
resonant laser pulse acts [She10]. After the resonant laser has kicked out the atoms within the
undesired lattice sites, a single lattice layer of atoms remains.

In a next step, horizontal lattice lasers are switched on and create a 2D optical lattice that
is superimposed onto the isolated 2D atomic sample. In Ref. [She10] the horizontal 2D lattice
is a square lattice with lattice constant a = 532 nm. The 2D atomic lattice monolayer created in
this way is used to prepare many-body quantum states and to study Hamiltonians.

2Currently existing fluorescence quantum gas microscopy apparatuses are discussed in Sec. 3.4.
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3.2. Fundamentals of Fluorescence Quantum Gas Microscopy

3.2.2. Fluorescence Imaging

To image the 2D atomic lattice monolayer, the atoms are illuminated with (near-) resonant laser
light. The atoms thereby get excited and start to emit fluorescence photons at a wavelength
λimage and rate Γscatt. The fluorescence rate Γscatt of an atom during fluorescence quantum gas
microscopy is found to be in the kilohertz regime in current alkali apparatuses [She10].

Presently existing alkali fluorescence quantum gas microscopy apparatuses use optical
transitions from the electronic ground state to the first excited fine structure doublet (nS1/2 →
nP1/2 and nS1/2 → nP3/2) for imaging the trapped atoms. Here, the symbol n denotes the prin-
cipal quantum number. These transitions are known as principal D1 and D2 transitions. For alkali
atoms, the principal D line transitions have transition wavelengths between 589 nm [Kraa] for
Na and 895 nm [Kra49] for Cs. Table 3.1 summarizes principal D line transition wavelengths of
alkali atoms. By tuning the frequency of the imaging laser to higher frequencies, other atomic
transitions in principle can be used for fluorescence imaging, thereby giving control on the
imaging wavelength λimage.

A small fraction of the fluorescence photons emitted by the atoms is captured by an imag-
ing system. The collection efficiency of the imaging system is defined through the solid angle
of its acceptance cone and is commonly around 15 % [She10]. The number of detected pho-
tons per atom therefore typically ranges from around ∼ 100 [Edg15] to several thousands of
photons [Bak09] for exposure times between 0.4 s [Yam16] and 2.6 s [Edg15].3 To obtain a per-
pendicular view on the atomic monolayer for the fluorescence images, the optical axis of the
imaging system has to be aligned with the vertical 1D optical lattice. This requires the imaging
system to be placed above or below the atomic sample.

3.2.3. Imaging System

The imaging system of a fluorescence quantum gas microscopy apparatus generally consists
of a microscope objective, sometimes called fluorescence quantum gas microscope (FQGM), and a
subsequent lens. The microscope objective collects the fluorescence photons and converts the
divergent fluorescence light into a collimated beam (infinite-conjugate). The subsequent lens
projects a magnified image of the atomic monolayer onto a CCD camera.

To resolve atoms at neighboring lattice sites, the resolution of the imaging system has to
be comparable to the lattice spacing or smaller. One typically specifies the spatial resolution of
an imaging system by considering its response to a point source. The image of a point source
formed by an imaging system is denoted as point spread function. The point spread function of
a diffraction-limited imaging system is an Airy disc [Hec09]. The distance d0 from the center
of the Airy disc to the first ring of zero intensity is often used to quantify the spatial resolution
of an imaging system (Rayleigh criterion). Following this criterion, the spatial resolution d0 is
then given by [Hec09]

d0 = 0.61 ·
λimage

NA
. (3.4)

Here, NA = nobject sin(θ/2) is the numerical aperture of the imaging system with nobject being the
object space refractive index and θ being the angular aperture of the imaging system. Because of
the finite aperture of the imaging system and the finite on-site confinement of the atoms, the

3Exposure times that are four orders of magnitude smaller than those given in the main text, namely ∼100 µs,
were reported for a fluorescence quantum gas microscopy experiment with ytterbium atoms [Mir15].
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lens

objective

camera

Figure 3.2.: Fluorescence quantum gas microscopy. A 2D lattice monolayer of atoms (red
dots) is imaged by a FQGM. Optical molasses beams (red) aligned with the horizontal lattice
laser beams (black arrows) excite the atoms, which are pinned to the sites of the optical lattice.
The imaging system captures a fraction of the fluorescence photons and creates an image of the
atoms on a camera. The imaging system typically consists of a microscope objective followed
by a lens that forms a magnified image.

fluorescence image of a single trapped atom is a convolution of an Airy function and a Gaus-
sian function [She10]. The convoluted intensity distribution of the image of a single trapped
atom is denoted as spot function.

In fluorescence images obtained with a FQGM, the zero intensity ring of the Airy disc of a
single atom is often buried within the wing of the Gaussian function [Bak09, She10]. The reso-
lution of a FQGM is therefore typically characterized in terms of the full-width at half-maximum
(FWHM) of the spot function. The spot function is determined experimentally by averaging
images of single atoms in a sparsely filled lattice monolayer. Measured spot functions of imag-
ing systems of existing FQGMs have FWHMs between ∼310 nm [Mir15] to ∼700 nm [She10].
These imaging systems have magnifications on the order of 100x [Wei11]. With such a mag-
nification, the image of a single atom that is confined within a lattice site typically illuminates
around 3x3 pixels on the camera chip.

3.2.4. Heating and Cooling of the Trapped Atoms

Fluorescence imaging causes the trapped atoms to absorb and spontaneously re-emit photons.
Both processes, absorption and spontaneous emission, increase the energy of an atom on av-
erage by the fluorescence recoil energy ER [Gri00, Met99]. The fluorescence recoil energy ER is
defined analogously to the lattice recoil energy in Eq. (2.19), however, depends on the wave-
length λimage of the fluorescence light. The mean energy of an atom thus grows by 2ER per
absorption-emission cycle and increases at a rate [Gri00, Met99]

Γheat = 2ER · Γscatt. (3.5)
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To illustrate the significance of the heating, we estimate the heating rate Γheat of a 40K atom that
is trapped at a lattice site of a 3D optical lattice during fluorescence imaging on the principal
D1 transition. As a numerical value for Γscatt we take the fluorescence rate that was calcu-
lated in Ref. [Hal15] from experimental data for 40K atoms in a FQGM experiment (Γscatt =
8× 103 s−1). According to Eq. (3.5), the heating rate Γheat of the 40K atom is then (kB×6.5
mK)/s.

To prevent atom hopping between different lattice sites due to heating, the lattice depth
V0 during fluorescence imaging must be many times larger than the gain in energy over the
exposure time [Nel07, Mir15]. For this reason, the power of the lattice lasers is increased just
before fluorescence imaging starts. The increased laser power leads to a larger lattice depth
V0 and thereby enhances the confinement of the atoms to the lattice sites. To relax the re-
quirements on the lattice depth V0 and thereby on the lattice laser power, the imaging laser
beams are typically arranged such that they provide simultaneous laser cooling of the trapped
atoms. In existing FQGM experiments, simultaneous laser cooling allows one to work with
lattice depths V0 between kB× 170 µK [Edg15] and kB× 2.5 mK [Omr15] during fluorescence
imaging without atom hopping. These lattice depths correspond to on-site trapping frequen-
cies ωsite = 2π×275 kHz for 40K [Edg15] and ωsite = 2π×1.3 MHz for 6Li [Omr15], respectively.
Such large lattice depths are more than one order of magnitude larger than those for which
Bose-Hubbard physics commonly manifests in quantum gas experiments [Wei14]. Tunneling
of atoms during fluorescence imaging can therefore be neglected, too.

Most alkali FQGM apparatuses use sub-Doppler laser cooling techniques acting on the
principal D1 and D2 transitions to laser cool the confined atoms. Optical molasses cooling,
for instance, has been employed in FQGM apparatuses for 87Rb atoms [She10, Bak09]. In Ref.
[She10], the equilibrium temperature of the trapped 87Rb atoms that was reached within the
optical molasses was about 22 µK as measured in Ref. [Wei11]. While optical molasses cooling
works best for atoms in free space, laser cooling schemes that are based on the presence of
an optical lattice are better suited for application in fluorescence quantum gas microscopy. In
that respect, Raman sideband cooling [Par15, Omr15, Che15] and electromagnetically induced
transparency (EIT) cooling [Hal15, Edg15] have been demonstrated to work successfully for
fluorescence quantum gas microscopy.

In the context of fluorescence quantum gas microscopy with 174Yb atoms, narrow-line
optical molasses cooling has been employed to cool the atoms [Yam16]. A completely different
approach was pursued in the experiment detailed in Ref. [Mir15]. There the time-averaged
lattice potential experienced by the trapped 174Yb atoms was deep enough (effective lattice
depth V0 = kB×34 mK) to preserve the atom distribution entirely without laser cooling. Figure
3.2 illustrates the concept of fluorescence quantum gas microscopy of a 2D lattice monolayer
of atoms, where the imaging system is placed above the atoms and laser cooling is performed
through optical molasses.

3.2.5. Light-Assisted Atom Collisions

Atom loss during fluorescence imaging arises predominantly at multiply occupied lattice sites,
where atoms can collide pairwise with each other. Two atoms, of which one is in its electronic
ground state and the second one is in an excited state due to optical excitation, interact with
each other through attractive dipole-dipole interaction [Fuh12]. For the time of the atomic
excitation the two atoms can form a weakly bound molecule. Before the excited atom relaxes
into its electronic ground state the atom pair can gain kinetic energy within the associated
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molecular potential [Fuh12]. The gain in kinetic energy is subsequently carried on by the
dissociated atoms. If the kinetic energy of the dissociated atoms is larger than the lattice depth
V0, the two atoms are expelled from the lattice site. Collisions of this type are known as light-
assisted collisions [Nel07, DeP99, Fuh12].

Light-assisted collisions reduce the occupation number of a lattice site by two. If the
initial occupation number of a lattice site is odd, light-assisted collisions remove all atoms
from that site except for a single atom. If the initial occupation number of the lattice site is
even, light-assisted collisions leave an empty site. Given the enhanced lattice confinement
during fluorescence imaging, the two-particle density within a lattice site is increased. Light-
assisted collisions thus take place on a time scale on the order of ∼100 µs [Bak09, DeP99].
Within this period of time the colliding atoms do not scatter a sufficient number of photons
to be discerned on the fluorescence images. Hence, fluorescence images typically display the
parity projection of the initial atom occupation distribution [Bak09, She10].

3.2.6. Image Analysis

The fluorescence images obtained from a FQGM commonly have a field of view of tens of mi-
crometers along each image axis such as in Ref. [She10]. A single fluorescence image therefore
captures typically thousands of lattice sites. To extract site occupation numbers from a fluores-
cence image, one performs a computational analysis of the recorded image. In the course of
the analysis a numerical algorithm reconstructs the recorded fluorescence image by using the
experimentally measured spot function (see Sec. 3.2.3) of the imaging system. The algorithm
fits copies of the spot function to a fluorescence image and thereby creates a reconstructed im-
age. The reconstructed image allows one to identify singly occupied as well as empty lattice
sites and thus to deduce site occupation numbers. The knowledge of the spot function is thus
a prerequisite for the algorithm to deconvolve fluorescence images.

Depending on the ratio of the FWHM of the spot function and the lattice spacing a, the
images of atoms at adjacent lattice sites overlap more or less on the camera chip. If the FWHM
of the spot function is much smaller than the lattice spacing a, atoms at neighboring lattice
sites are well resolved and can be directly distinguished from each other in a fluorescence
image. However, if the FWHM of the spot function is larger than the lattice spacing a, adjacent
atoms form a blurred spot on the camera chip and cannot be discerned anymore. In certain
cases an unambiguous reconstruction of the site occupation numbers is then only possible
with additional input information to the algorithm, such as the lattice geometry or the lattice
spacing. Based on this supplementary information, the algorithm can exclude allegedly correct
solutions of the deconvolution that are physically unrealistic within the specific experimental
setting.

3.3. High-NA Microscope Objectives for FQGM Apparatuses

The microscope objective of a FQGM apparatus typically consists of a couple of lenses that
are mounted within a housing. For a given imaging wavelength λimage, a spatial resolution
d0 of the microscope objective that is comparable to the lattice spacing a (i.e. d0 ∼ a) can be
achieved by adapting the numerical aperture NA of the objective. The numerical aperture
increases with larger diameter of the lens aperture and shorter working distance. Since free
space is often limited in a FQGM apparatus, a large lens diameter of several centimeters for
the microscope objective is impractical in many cases. For this reason, one of the vital points in
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designing a FQGM objective and apparatus often becomes the question how close the objective
can be placed to the atoms.

Common to all FQGM apparatuses is that the atoms are imaged through a window of
the vacuum chamber. To withstand the pressure difference between the inside of the vac-
uum chamber and the outside and in order to minimize bending because of the atmospheric
pressure, vacuum windows are usually a few millimeter thick. The vacuum window acts
as an additional optical element and thus leads to aberrations (e.g. spherical aberrations) in
the imaging system. To obtain diffraction-limited fluorescence images, the objective therefore
needs to be corrected for the vacuum window. Since spherical aberrations scale with the thick-
ness of the vacuum window [Wil96, Smi66], the vacuum window in Ref. [Edg15] was only
200 µm thick in order to reduce spherical aberrations.

Three different ways of implementing a high-resolution microscope objective to a FQGM
apparatus are imaginable:

(a) Objective resides outside of the vacuum chamber
advantages: objective is exchangeable, no in-vacuo components

disadvantages: aberrations due to vacuum window, objective mechanically decoupled
from the trapped atoms

(b) First lens of objective placed inside of the vacuum chamber
advantages: lens can be close to the atoms, aberrations due to vacuum window can

be reduced

disadvantages: alignment of in-vacuo lens relative to objective necessary, UHV com-
patibility of the lens and its holders must be given

(c) First lens of objective is part of the vacuum window
advantages: no aberrations due to vacuum window, working distance can be re-

duced

disadvantages: requires alignment of objective to lens, a new lens is needed when the
vacuum window is replaced and vice versa, UHV compatibility of the
lens must be given

Figure 3.3 illustrates the three options (a)-(c) for implementation of a microscope objective
to a vacuum chamber. The configurations (b) and (c) allow one to bring the atoms close to the
first lens of the objective. These two configurations are realized in several apparatuses in which
a hemispherical lens is positioned only a few micrometers away from the atoms [Par15, Che15,
Bak09, Mir15]. In these setups the small working distance increases the numerical aperture
of the objective by a factor that is given by the refractive index of the lens (solid immersion
effect). As a consequence, the resolution of the objective is enhanced. A fourth possibility,
namely having the entire objective placed inside of the vacuum chamber, is connected with
several technical difficulties involving mechanical feasibility, vacuum compatibility, and heat
resistance and has no substantial advantages over the three options described before.

3.4. State of the Art of FQGM Apparatuses

At least nine FQGM apparatuses exist presently. Table 3.2 lists currently existing FQGM appa-
ratuses and summarizes their key specifications. These apparatuses are used to study atomic
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(c)

objective

vacuum window

atoms
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Figure 3.3.: Implementation of a FQGM objective. To implement a high-resolution micro-
scope objective to a quantum gas apparatus, several possibilities exist. The objective might be
(a) located fully outside of the vacuum chamber or (b) divided into two segments of which
the front one is mounted under vacuum. (c) Another possibility involves contacting the front
lens of the objective to the window of the vacuum chamber by (left) glueing or (right) optically
contacting. An additional glass substrate can help to reduce the working distance.
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lattice gases of the elements 6Li [Par15, Omr15], 40K [Hal15, Edg15, Che15], 87Rb [She10,
Bak09], and 174Yb [Mir15, Yam16]. The apparatuses use objectives that are either custom made
by companies [Omr15, Hal15, Edg17, She10, Bak11, Yam16] or make use of commercial ones
[Par15, Che17, Mir15]. The objectives have numerical apertures of NA = 0.68 and larger, the
only exception being the 6Li FQGM objective of the Gross group, which has a numerical aper-
ture of NA = 0.5 [Omr15]. The microscope objectives are either positioned entirely outside of
the vacuum chamber (compare Fig. 3.3 (a)) [Omr15, Hal15, Edg15, She10, Yam16] or have a
segmented design with optical elements that are placed inside the vacuum chamber or con-
tacted to the vacuum window (compare Fig. 3.3 (b)+(c)) [Par15, Che15, Bak09, Mir15].

Several FQGM setups in Table 3.2 possess technical peculiarities that add more flexibility
to the apparatus. Two examples in this respect concern the horizontal optical lattice for the
atomic monolayer. Most setups listed in Table 3.2 superimpose pairs of counter-propagating
laser beams to form an optical lattice (see Sec. 2.2.2). These lattices have a fixed lattice spacing
and lattice geometry. To circumvent this inflexibility, the apparatus of Ref. [Omr15] utilizes the
microscope objective besides imaging also for the generation of the horizontal optical lattice.
For this, pairs of collimated, parallel laser beams are coupled in the reverse direction into the
objective and are focused onto the atoms. The laser beams of each lattice beam pair intersect
each other under an angle in the focal plane of the objective and thus create a standing wave
within the plane of the atoms. By adding further beam pairs or by altering their spatial ar-
rangement different lattice geometries can be obtained. Another approach towards generation
of optical lattices in a FQGM apparatus has been realized in Ref. [Bak09]. There, the micro-
scope objective has been used to focus a phase-modulated lattice laser beam onto the atoms to
engineer laser light intensity patterns for optical lattices.

Another technical peculiarity realized in a FQGM apparatus of Table 3.2 relates to the
process of fluorescence imaging, which is commonly intertwined with laser cooling in present
FQGM experiments (see explanation in Sec. 3.2.4). This link is eliminated in Ref. [Yam16],
where imaging and cooling of 174Yb atoms was performed on separate atomic transitions.
Narrow-line laser cooling on the 1S0-3P1 transition of 174Yb was applied to suppress heating
due to imaging on the 1S0-1P1 transition. This imaging approach permits spectral separation
of imaging and cooling light and thus a reduction of background light.

3.5. Experimental Strategy for Fluorescence Quantum Gas
Microscopy within the K−Cs Apparatus

In this Section, we sketch the envisioned experimental sequence for performing fluorescence
quantum gas microscopy within the K−Cs apparatus. As the microscope objective provides
constraints on the design of the vacuum setup of the K−Cs apparatus, we summarize its lens
design here.

3.5.1. Experimental Sequence

Each experimental cycle will begin with laser and evaporative cooling of K or Cs atoms to
form an atomic K or Cs BEC. All stages of BEC production will take place at the same location
(production site) within the vacuum apparatus. Once a condensate is prepared, it will be moved
to another spot (science site) within the apparatus along a straight, horizontal route. A detailed
discussion of the vacuum setup follows in Ch. 6 and Ch. 8. Transport of the atoms from the
production to the science site will be realized by optical means. The science site will be located
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3.5. Experimental Strategy for Fluorescence Quantum Gas Microscopy within the K−Cs
Apparatus

right beneath a vertically oriented FQGM objective. After the atoms have been transported to
the science site, they will be loaded into a vertical 1D optical lattice. The vertical lattice will
be generated by retroreflecting a 1064 nm laser beam from the front lens of the objective. After
preparation of an atomic lattice monolayer as outlined in Sec. 3.2.1, a horizontal 2D square
optical lattice will be superimposed onto the atomic monolayer. The horizontal lattice will
be generated by two horizontal, mutually orthogonal 1064 nm laser beams that will be retro-
reflected by mirrors mounted outside of the vacuum chamber. Following preparation of the
atomic many-body quantum state to be studied the atom distribution within the optical lattice
will be frozen by increasing the power of the lattice laser beams. Optical molasses beams along
the lattice axes will then illuminate the trapped atoms on the principal D2 line transitions of
K and Cs. Accordingly, the imaging wavelength for K atoms will be λK

image = 766 nm and the
imaging wavelength for Cs atoms will be λCs

image = 852 nm. The fluorescence image formed by
the imaging system will be recorded by a CCD camera.

3.5.2. Optical Transport

To transport the atoms from the production site to the science site, we will combine two optical
transport methods that have been successfully realized in the past [Léo14, Sch06]. The one
transport method relies on a focused Gaussian laser beam that acts as an optical dipole trap for
the atoms (see Sec. 2.2.1). By translating the laser focus, the atoms are dynamically displaced.
Translation of a beam focus can be generally achieved by moving the focusing lens with a
motorized translation stage [Gus01] or by using a focus-tunable lens. In the latter case, the
lens is fixed in position and the focal length of the lens is tuned through current-control.

A focus-tunable lens dispenses from the need for a translation stage that is prone to trans-
fer vibrations to the experimental setup. However, as the focal length of the focus-tunable
lens is varied, the beam waist w0 of the focused laser beam changes during transport. This
dependence of the beam waist on the focal length comes at the expense of a varying depth
and changing trapping frequencies of the optical dipole trap. To circumvent that drawback, a
combination of two focus-tunable lenses and one static lens placed in series at defined mutual
distances can be used. Such an optical setup enables the independent control of the focus posi-
tion and beam waistw0 and thus allows for uniform trapping conditions over the full transport
distance [Léo14].

An alternative method that has been realized in the past to transport atoms is based on
two collinear, counter-propagating laser beams that form a standing wave. A relative fre-
quency shift ∆ωL of the two laser beams transforms the stationary standing wave into a mov-
ing standing wave (see Eq. (2.13)). Atoms that are trapped in the minima of the optical lattice
potential are then dragged in axial direction at a velocity v given in Eq. (2.15). In this way,
the 1D optical lattice forms an atomic conveyor belt [Kuh01, Sch06]. The experiment detailed
in Ref. [Sch06] uses a Bessel beam and a counter-propagating Gaussian beam to create a con-
veyor belt. The lattice part of the optical lattice potential yields axial confinement whereas the
radial confinement due to the Bessel beam supports the atoms against gravity.

For the new K−Cs apparatus, we aim to realize the transport by two counter-propagating
laser beams that form a conveyor belt. One of the laser beams will be a Gaussian beam and
will be focused by focus-tunable lenses, similar to the setup described in Ref. [Léo14]. The
second laser beam potentially will be a Bessel beam. Further details with respect to the optical
transport can be found in the thesis of M. Gröbner [Grö17a].
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3. Fluorescence Quantum Gas Microscopy
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Figure 3.4.: Lens design and implementation of the FQGM imaging system. The imaging
system consists of five lenses, which are labeled (1) - (5). Lenses (1) - (4) form the microscope
objective and lens (5) projects the image onto a camera chip. The front lens (1) is placed inside
of the vacuum chamber while lenses (2) - (5) are held within a housing outside of the vacuum
chamber. Fluorescence imaging of the atoms is performed through a vacuum window, which
is denoted as (W). The red lines represent ray traces to illustrate the effect of the individual
lenses. The retro-reflected, vertical lattice laser beam is indicated by the green double arrow
and the lattice slices of the resulting vertical 1D optical lattice are shown as green ellipses. The
blue arrows indicate one of the two retro-reflected lattice laser beams that are used for the
generation of the horizontal 2D optical lattice. Figure adopted from Ref. [Mar17].
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3.5. Experimental Strategy for Fluorescence Quantum Gas Microscopy within the K−Cs
Apparatus

3.5.3. K−Cs Imaging System

The FQGM imaging system of the K−Cs apparatus is a home-built one to avoid potential high
costs for custom commercial solutions as pointed out in Ref. [Mar17]. The imaging system
was designed by our Postdoc E. Kirilov and was assembled and tested by our master student
M. Marszałek. For a detailed discussion of the imaging system, we refer to the thesis of M.
Marszałek [Mar17]. To outline the geometrical restrictions that the imaging system imposes
on the design of the K−Cs apparatus, we outline its optical design in the following.

The imaging system is designed to operate at the imaging wavelengths of potassium
(λK

image = 766 nm) and cesium (λCs
image = 852 nm). Figure 3.4 shows the lens design of the imag-

ing system. The imaging system consists of five commercial lenses, which are labeled with (1)
to (5) in Fig. 3.4. Lenses (1)4, (2)5, (3)6, and (4)7 form the microscope objective and project the
image of the atoms to infinity (infinite conjugate ratio). The rear lens (5)8 accepts the collimated
light from the previous lenses and forms a magnified image on a camera chip.

The front lens (1) resides inside of the vacuum apparatus and is a plano-convex, aspheric
lens. The asphere has an outer diameter of 15 mm and its flat surface points downwards to-
wards the atoms. The distance between the asphere and the atomic sample is 3.7 mm. We
equipped the asphere with custom antireflection and high-reflectivity coatings on both sides
after having purchased it. The specifications of the coatings are given in Sec. 8.3.2. The lenses
(2) - (5) are positioned outside of the vacuum chamber and are mounted within a stainless
steel housing. These lenses were already coated with a broadband antireflection coating on
both sides upon their arrival. The imaging system is corrected for a plane-parallel, fused-silica,
5 mm-thick vacuum window, which is denoted as (W) in Fig. 3.4.

The optical design software Zemax employed for the lens design predicts the imaging
system to be diffraction limited and to have a spatial resolution d766

0 = 793 nm at 766 nm and
d852

0 = 882 nm at 852 nm [Mar17]. The magnification is expected to be 55x.
To characterize the imaging system, a back-illuminated 500 nm-diameter pinhole was im-

aged with the imaging system onto a CCD camera. The imaging system was tested with re-
spect to both imaging wavelengths. To that end, the pinhole was illuminated in succession
with 766 nm and 852 nm laser light. For the measurements a 5 mm thick fused silica substrate
imitated the vacuum window (W).

When the pinhole was centered to the optical axis of the imaging system, the imaging
system yielded diffraction-limited images of the pinhole for both imaging wavelengths. The
spatial resolution of the imaging system was determined through wavefront reconstruction
from collected pinhole images to be d766,m

0 = 797(1) nm at 766 nm and was approximated to be
d852,m

0 ≈ 895 nm at 852 nm [Mar17]. The magnification of the imaging system was measured
to be 56.20(8) for 766 nm and assumed to be identical for 852 nm [Mar17]. The diffraction-
limited performance of the imaging system was maintained for off-axis imaging when the
pinhole was moved within a field of view of approximately ±40 µm in each transverse spa-
tial direction [Mar17]. To determine the chromatic focal shift between the image planes for
766 nm and 852 nm illumination, the camera was moved along the optical axis and images
were taken at several positions. The mutual distance of the focus locations revealed a focal
shift of 4.15(2) mm [Mar17]. With respect to future applications, the chromatic focal shift of

4LightPath, 355561.
5Edmund Optics, 49-955.
6Edmund Optics, 48-747.
7Thorlabs, LD2060-B.
8Thorlabs, AC254-500-B.
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3. Fluorescence Quantum Gas Microscopy

the imaging system implies that the camera needs to be translated for alternating imaging of
potassium and cesium samples. The camera thus might be mounted onto a motorized transla-
tion stage.
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4. Calculation of Electric-Dipole
Polarizabilities of 39K Atoms

A long-term goal of the K−Cs apparatus is to push fluorescence quantum gas microscopy
of 39K atoms towards higher spatial resolution. We therefore plan to image the trapped 39K
atoms via ground-state transitions to higher excited atomic levels. A question that arises in
that regard is what optical lattice potential the 39K atoms experience in the excited atomic
levels. In order to calculate the optical lattice potentials for 39K atoms in excited atomic levels,
we numerically compute values for the atomic polarizability α for a number of excited states
of 39K. We begin this Chapter with a motivation of fluorescence quantum gas microscopy via
higher excited atomic levels. We discuss why we cannot resort to literature values for the
atomic polarizabilities for all atomic states of 39K that are of interest to us. Instead, we need
to calculate the atomic polarizabilities of several states of 39K on our own. We provide the
theoretical foundation for the calculation of atomic polarizabilities and present our numerical
results for the atomic polarizabilities at the end of this Chapter. The theoretical introduction of
this Chapter is partially based on Ref. [Bon97].

4.1. Motivation and Problem Statement

Conventional fluorescence quantum gas microscopy of alkali quantum gases as described in
Sec. 3.2 uses the principal D line atomic transitions for imaging. Imaging on atomic transitions
to higher excited levels, e.g. the 4S1/2 → 5P3/2 transition for 39K, shifts the fluorescence light of
the atoms towards shorter wavelengths. The transition wavelength of the 4S1/2 → 5P3/2 tran-
sition (λ = 404.4 nm [Kraa]) is nearly a factor of two shorter than the transition wavelength
of the principal D1 transition that has been employed so far for imaging K atoms in FQGM
apparatuses [Hal15, Edg15, Che15]. In view of the diffraction limit of an imaging system, a
shorter imaging wavelength λimage facilitates a higher spatial resolution d0 (see Eq. (3.4)). An
enhanced spatial resolution in fluorescence quantum gas microscopy brings single-site detec-
tion of atoms in optical lattices with reduced lattice spacings within reach of experimental
realization. Optical lattices with reduced lattice spacings include for example bichromatic su-
perlattices of overlapping 1064 nm and 532 nm lattice laser beams, where the “short lattice
spacing” is 266 nm.

Fluorescence imaging of 39K atoms on the 4S1/2 → 5P3/2 transition excites atoms in the
5P3/2 level. From this level the atoms decay into the 4S1/2 ground state through different decay
channels. In most of the decay channels, the potassium atoms temporarily occupy intermedi-
ate atomic levels, namely the 4P1/2, 4P3/2, 5S1/2, 3D5/2, or 3D3/2 levels. This decay behavior
is in contrast to conventional fluorescence quantum gas microscopy of 39K atoms, where in-
termediate levels are absent. Since the coupling of atoms to laser light is level-dependent,
the optical lattice potential experienced by the 39K atoms during fluorescence imaging varies
for the different excited and intermediate levels. Typically, the optical lattice potential in a
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4. Calculation of Electric-Dipole Polarizabilities of 39K Atoms

FQGM apparatus is strongly confining for atoms in their internal ground state. Within the
same optical lattice the confinement for excited atomic levels, however, might be weaker or
even inverted.

The optical lattice potential that an atom experiences is determined through the atomic
polarizability α and the laser intensity IL (see Eq. (2.10)). In order to calculate the lattice poten-
tial for 39K atoms in excited atomic levels up to the 5P3/2 level, we are interested in numerical
values for the atomic polarizabilities α of the atomic levels 4S1/2, 4P1/2, 4P3/2, 5S1/2, 3D5/2,
3D3/2, 5P1/2, and 5P3/2 at 1064 nm lattice laser light. To our knowledge, numerical values for
the atomic polarizability α of K atoms at 1064 nm have been reported only partially for the
levels of interest in this Chapter [Saf13, Nan12]. We thus calculate the atomic polarizabilities α
of 39K for all missing atomic levels in this Chapter. For comparison, we determine the atomic
polarizability α also for those atomic levels for which we find numerical values in literature.

4.2. Static and Dynamic Polarizability

An atom within a static and uniform electric field ~F = F · ~E with field strength F and unit field
vector ~E experiences a deformation of its electron cloud. The energy of the rearranged charge
distribution within the external field can be expressed by means of a multipole expansion
[Jac99a]. The mathematical expression for the energy is thereby expanded into a sum of energy
contributions that are associated with different electric multipole moments of the new charge
distribution. Neutral particles do not carry a net electric charge and hence have no electric
monopole moment. Thus, for a neutral atom, the lowest-order contribution to the multipole
expansion is an electric dipole moment ~p that can be written as [Bon97]

~p(~F ) = ~pperm +α · ~F +
1

2!
β .. ~F 2 +

1

3!
γ ..

. ~F 3 + . . . . (4.1)

The first term, ~pperm, in Eq. (4.1) corresponds to the permanent electric dipole moment of the
particle. Because atoms do not possess a permanent electric dipole moment [Jer14], it is zero in
our treatment, i.e. ~pperm = ~0. All other terms in Eq. (4.1) represent field-induced contributions
to the dipole moment ~p. The contributions are characterized by the atomic polarizability α and
the hyperpolarizabilities β and γ. In a mathematical sense α, β, and γ are Cartesian tensors of
rank two, three, and four [Bon97]. Since hyperpolarizabilities only become relevant for non-
linear effects in strong electric fields, we neglect them here.

In lowest order of field strength F , the atomic polarizability α in Eq. (4.1) relates the
induced electric dipole moment ~p to the electric field ~F that induces it according to

~p = α · ~F . (4.2)

The polarizability tensor α has tensor components αµν with µ, ν ∈ {x, y, z} and is in general
anisotropic. The potential energy of the induced electric dipole moment ~p and therefore of the
atom within the initially considered electric field ~F is [Mil78]

Vdip = −1

2
· ~p · ~F = −1

2
·α .. ~F

2. (4.3)

For obtaining the right side of Eq. (4.3) we made use of Eq. (4.2).
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4.3. Valence Scalar and Valence Tensor Polarizability

An equivalent expression for the dipole moment ~p in Eq. (4.2) is

~p =
∑
i

qi~ri, (4.4)

where the sum runs over all constituents i that carry an electric charge qi. If the nucleus of the
atom with atomic number Z resides at the origin, Eq. (4.4) reduces to

~p = −
Z∑
i=1

e~ri. (4.5)

The sum in Eq. (4.5) now runs over all Z electrons of the atom, which have an electric charge
qi = −e with e being the elementary charge. Equation (4.5) indicates that all Z electrons of
the atom contribute to the dipole moment ~p. Thus, numerical evaluation of the polarizability
tensor components αµν in Eq. (4.2) is generally a many-body problem.

Electrons in atoms occupy different atomic orbitals in accordance with Pauli’s exclusion
principle. One distinguishes between electrons in orbitals of closed shells (core electrons) and
electrons in orbitals of open shells (valence electrons). Since valence electrons are more weakly
bound to the atomic nucleus than core electrons, valence electrons are affected more strongly
by an applied electric field than electrons of inner shells. Hence, valence electrons typically
contribute most to the polarizability of an atom [Mil78].

For the cases discussed in this Thesis, we will see in the following Section that the polariz-
ability tensorα can be replaced by a scalar αtot. We made use of this result already in Eq. (2.10)
to calculate optical potentials, where we set αtot = α. For atoms with a single valence electron
(monovalent atoms), like alkali atoms, it is customary to write the total atomic polarizability αtot
as a sum [Mit10, Saf13, Der99]

αtot = αv + αc + αvc. (4.6)

The contribution αv characterizes the polarizability of the valence electrons and disregards
the influence of the external electric field ~F on the core electrons. It is denoted as valence
polarizability. The influence of the applied electric field ~F on the core electrons is described by
the polarizability αc of the core electrons (core polarizability). The effect of the polarized valence
electrons on the core electrons is given by αvc (valence-core polarizability). Since electrons of
the ionic core are more strongly bound to the nucleus than valence electrons, the valence-
core contribution αvc is comparatively small [Dut15a]. For electric fields ~F that oscillate at
frequency ωL, each term in Eq. (4.6) becomes frequency-dependent [Dut15a]

αtot(ωL) = αv(ωL) + αc(ωL) + αvc(ωL). (4.7)

4.3. Valence Scalar and Valence Tensor Polarizability

The valence polarizability αv in Eq. (4.6) can be calculated within the framework of perturba-
tion theory. It is this method that is the subject of this Section. In a semiclassical approach, one
treats the electric field ~F classically and takes the quantum-mechanical properties of the atom
into account by using the dipole moment operator p̂ and the polarizability tensor operator α̂.
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4. Calculation of Electric-Dipole Polarizabilities of 39K Atoms

4.3.1. Static Electric Field

A monovalent atom placed within a static and uniform electric field ~F = F · ~E as considered
in Sec. 4.2 is described by the Hamilton operator [Sob79]

ĤStark = Ĥatom − ~F · p̂. (4.8)

The Hamilton operator Ĥatom of the unperturbed atom has eigenstates |ϕk〉with eigenenergies
Ek. The dipole operator p̂ is defined analogously to Eq. (4.4) as

p̂ =
∑
i

qir̂i (4.9)

with position operator r̂ and the sum taken over all charged particles i. If we assume the atom to
reside at the origin of an arbitrary coordinate system, Eq. (4.9) for the single valence electron
of the atom becomes

p̂ = −er̂. (4.10)

The second term in Eq. (4.8) refers to the potential energy of the induced electric dipole mo-
ment within the electric field ~F and is considered as perturbation. The assumption of a static
electric field ~F simplifies the notation of the following expressions and will be dropped at the
end of this Section.

In first-order perturbation theory the energy shift ∆E
(1)
a of an atomic eigenstate |ϕa〉with

eigenenergy Ea owing to the presence of the electric field ~F is given by the expectation value

∆E(1)
a = −〈ϕa|~F · p̂|ϕa〉. (4.11)

For parity reasons it is zero in alkali-metal atoms, i.e. ∆E
(1)
a = 0 [Aro07]. In second order, the

energy correction ∆E
(2)
a to the eigenenergy Ea is [Mit10]

∆E(2)
a = −

∑
k 6=a

∣∣∣〈ϕa|~E · p̂|ϕk〉∣∣∣2
Ek − Ea

· F 2, (4.12)

where the sum is taken over all valence eigenstates |ϕk〉, except for k = a. The energy correc-
tion ∆E

(2)
a depends quadratically on the field strength F and can be positive or negative for

different atomic states |ϕa〉. We can deduce an expression for the tensor components αµν of the
atomic polarizability tensor α through comparison of Eq. (4.12) with Eq. (4.3). For an atom in
state |ϕa〉 the components αµν can be expressed as [Bon97]

αµν = 2
∑
k 6=a

〈ϕa|p̂∗µ|ϕk〉〈ϕk|p̂ν |ϕa〉
Ek − Ea

. (4.13)

Here, p̂µ and p̂ν are Cartesian components of the dipole operator p̂. For a static electric field,
the polarizability tensor α is real and symmetric, i.e. α∗µν = ανµ. The number of independent
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4.3. Valence Scalar and Valence Tensor Polarizability

tensor components αµν thus reduces to no more than six. These six components correspond
to the three diagonal elements αµµ and the three off-diagonal elements with either µ < ν or
µ > ν.

We now assume the electric field ~F in z−direction and choose the electric field direction
~E as the quantization axis. In experiments, the projection of the induced dipole moment p̂ onto
the z−axis, pz , is measured, with pz = 〈ϕa|p̂z|ϕa〉. With the previous choice of the electric field
~F the projection pz is given by

pz = ~E · ~p =

0
0
1

 ·
αxx αxy αxz
αxy αyy αyz
αxz αyz αzz

 ·
0

0
F

 = αzzF. (4.14)

The projection pz is proportional to the field strength F with the proportionality constant being
the expectation value αzz = 〈ϕa|α̂zz|ϕa〉 of the polarizability operator zz−component. Thus,
we are left with a single quantity αzz that describes the interaction of the valence electron
of the atom with the external electric field ~F . The quantity αzz corresponds to the valence
polarizability αv in Eq. (4.6), i.e. αv = αzz .

In a next step, we specify the atomic eigenstate |ϕa〉 and assume that it corresponds to
a fine structure Zeeman state. A fine structure Zeeman state is determined through a set of
quantum numbers, which include the principal quantum number n, the spin angular momentum
quantum number S, the orbital angular momentum quantum number L, the total electronic angular
momentum quantum number J , and the magnetic projection quantum number MJ ∈ {−J,−J +
1, . . . ,+J}. For reasons of clarity, we condense n, S, and L into a single quantity γ and only
notate J and MJ explicitly in the following. The eigenstate |ϕa〉 is then written as |ϕa〉 =
|γaJaMJ,a〉. The valence polarizability αv of a fine structure Zeman state |ϕa〉 = |γaJaMJ,a〉 is
given through [Bon97]

αv(γa, Ja,MJ,a) = 〈ϕa|α̂zz|ϕa〉 = 〈γaJaMJ,a|α̂zz|γaJaMJ,a〉 = α0 +α2 ·
3M2

J,a − Ja(Ja + 1)

Ja(2Ja − 1)
.

(4.15)

The right side of Eq. (4.15) is a sum of two terms: the first term, α0, is independent of MJ,a and
therefore a constant for each fine structure level. Since α0 is constant for different orientations
of the induced electric dipole moment relative to the electric field, it constitutes the isotropic
part of αv(γa, Ja,MJ,a). The constant α0 is frequently denoted as static valence scalar polarizabil-
ity. It can be understood either as the average of the expectation values αµµ of the diagonal
polarizability tensor operator components for a given state |γaJaMJ,a〉 or, equivalently, as the
average of αv(γa, Ja,MJ,a) over all MJ,a according to [Bon97]

α0 =
1

3

∑
µ

αµµ(γa, Ja,MJ,a) =
1

2Ja + 1

∑
MJ,a

αv(γa, Ja,MJ,a). (4.16)

The second term of the right side of Eq. (4.15) has an angular dependency given through
MJ,a. It describes the anisotropy of αv(γa, Ja,MJ,a). The factor α2 is a constant for each fine
structure level and is known as static valence tensor polarizability. When Ja = 0 or Ja = 1/2, the
tensor polarizability contribution in Eq. (4.15) vanishes and αv(γa, Ja,MJ,a) is equal to α0 (see
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also discussion in Sec. 4.3.2) [Kha68, Bon97]. For Ja = 0, i.e. spherically symmetric states, the
polarizability tensor α is diagonal and the tensor components αµµ(γa, Ja,MJ,a) are identical
[Bon97]. The atomic polarizability tensor α is then isotropic and reduces to a single scalar.
If Ja > 1/2, the tensor polarizability contribution lifts the degeneracy of Zeeman states with
different |MJ,a|. The tensor polarizability contribution in Eq. (4.15) is maximum for states with
MJ,a = ±Ja. The static valence polarizability αv(γa, Ja,MJ,a) in Eq. (4.15) depends on the
absolute value |MJ,a|. Zeeman states of the same fine structure level with different |MJ,a| thus
interact differently with the electric field.

4.3.2. Oscillating Electric Field

The expression for αv(γ, J,MJ) in Eq. (4.15) was obtained under the assumption of a static and
uniform electric field ~F along the z−direction. For oscillating electric fields, e.g. laser light,
with frequency ωL and linear polarization parallel to the z−direction, Eq. (4.15) remains valid
if ωL is at least several line widths off from any atomic resonance [Bon97, Dut15a, Aro07]. The
static valence polarizability αv is then replaced by the frequency-dependent valence polarizability
αv(ωL). Analogously, the static valence scalar and valence tensor polarizabilities become fre-
quency dependent with α0 → α0(ωL) and α2 → α2(ωL). When the laser light is off-resonant,
α0(ωL), α2(ωL), and thus αv(ωL) stay real [Bon97].

The frequency-dependent valence scalar polarizability α0(ωL) for a fine structure level |γaJa〉
can be expressed through [Aro07, Mit10]

α0(ωL) =
2

3(2Ja + 1)

∑
k 6=a

dipole-allowed

(Ek − Ea)
(Ek − Ea)2 − (~ωL)2

· |〈γaJa||~p||γkJk〉|2 (4.17)

with the sum taken over all dipole-allowed transitions |γaJa〉 → |γkJk〉. The double-bar matrix
element 〈·||~p||·〉 in Eq. (4.17) corresponds to the reduced electric-dipole matrix element (RME).

The frequency-dependent valence tensor polarizability α2(ωL) for a fine structure level |γaJa〉
can be written as [Aro07, Mit10]

α2(ωL) = −4C
∑
k 6=a

dipole-allowed

(−1)Ja+Jk+1

{
Ja 1 Jk
1 Ja 2

}
(Ek − Ea)

(Ek − Ea)2 − (~ωL)2
(4.18)

× |〈γaJa||~p||γkJk〉|2

with the sum taken over all dipole-allowed transitions |γaJa〉 → |γkJk〉. The curly brackets
{: : :} in Eq. (4.18) represent a Wigner 6J-symbol. Six-J symbols are used in angular momentum
coupling of three separate systems and can be evaluated with the Racah formula given in Ref.
[Mes65b]. The constant C in Eq. (4.18) is defined as

C =

√
5Ja(2Ja − 1)

6(Ja + 1)(2Ja + 1)(2Ja + 3)
. (4.19)

For ωL = 0, i.e. for static electric fields, Eq. (4.17) and Eq. (4.18) convert into the expressions
for the static valence scalar polarizability α0 and static valence tensor polarizability α2 [Mit10].
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Calculation of α0(ωL) and α2(ωL) with Eqs. (4.17) and (4.18), also known as sum-over-
states approach, requires summation over levels |γkJk〉 with opposite parity. Typically, for a
given laser frequency ωL, only a few atomic transitions |γaJa〉 → |γkJk〉 provide substantial
contributions to the sums of α0(ωL) and α2(ωL). The sum-over-states method is therefore a
common approach to numerically calculate the valence polarizability αv(ωL) of monovalent
atoms.

4.4. Electric-Dipole Polarizabilities of 39K Atoms

In this Section, we calculate the frequency-dependent valence scalar and tensor polarizabilities
α0(ωL) and α2(ωL) of the fine structure levels 4S1/2, 4P1/2, 4P3/2, 5S1/2, 3D5/2, 3D3/2, 5P1/2, and
5P3/2 of 39K at our lattice laser wavelength λL = 1064 nm. We make use of the sum-over-
states approach in Eqs. (4.17) and (4.18). We use the results to calculate thereafter the total
polarizability αtot(ωL) with Eqs. (4.15) and (4.7) for individual Zeeman states of those levels.

4.4.1. Level Scheme of 39K

Potassium belongs to the first group of the periodic table of elements and is therefore a mono-
valent atomic species. It has three naturally occuring, chemically stable isotopes, 39K, 40K, and
41K, which are commonly used in potassium quantum gas experiments. In this Thesis, we
are concerned with the most abundant isotope, 39K. The isotope 39K has a nuclear spin ~I with
nuclear spin quantum number I = 3/2 [Ari77]. If interaction between the total electronic angular
momentum ~J and the nuclear spin ~I is ignored, the ground state of 39K is a 4S1/2 fine structure
level. Figure 4.1 shows the level scheme of 39K with all spectroscopic terms found in literature.
We resolve the fine-structure splitting for levels up to the 5P3/2 level in Fig. 4.1. Because of
the decreasing fine-structure splitting of higher-lying levels, we give only the spectroscopic
term n2S+1L for fine structure levels beyond the 5P3/2 level. Note, in Fig. 4.1 the 3D5/2 level
lies below the 3D3/2 level, which corresponds to an inverted fine structure doublet. The same
behavior is observed for all n2D terms in potassium. Doublet inversion is known for many
alkali-metals and alkali-like systems and is discussed in Ref. [Luc76, Gal78, Hol76].

Dominant contributions to the valence polarizability αv(ωL) of an atomic state |ϕa〉 come
from transitions |ϕa〉 → |ϕk〉 that are closest to resonance with the incident laser light. In Fig.
4.1, we identify the dominant transitions for the valence polarizabilities αv(ωL) of the 4S1/2,
4P1/2, 4P3/2, 5S1/2, 3D5/2, 3D3/2, 5P1/2, and 5P3/2 levels by indicating the energy of a photon
with wavelength 1064 nm through vertical black arrows. The different lengths of the arrows
result from the circumstance that the shown levels are not to scale. Under consideration of the
selection rules for dipole transitions, we find that for the 4S1/2 ground state the transitions to
the 4P1/2 and 4P3/2 levels are closest to resonance while for the 4P1/2 and 4P3/2 fine structure
levels the transitions to the 3D5/2 and 3D3/2 fine structure levels are nearest. In contrast, for
the 5S1/2, 3D5/2, and 3D3/2 fine structure levels the transitions to the 72Po term are closest
to resonance. Lastly, for the 5P1/2 and 5P3/2 levels the transitions to the highly excited 132S
and 112D terms are closest. Among the dominant, dipole-allowed transitions just listed, the
5P1/2 → 13S1/2 transition is closest to resonance with 1064 nm laser light. The detuning of the
1064 nm laser light relative to that atomic transition is ∆ ≈ 800 GHz. Thus, we can use Eq.
(4.17) and Eq. (4.18) to calculate atomic polarizabilities.
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Figure 4.1.: Level scheme of 39K. The level scheme shows the fine structure levels between
the 4S1/2 ground state and the 5P3/2 excited level. For energetically higher levels, the associ-
ated spectroscopic terms are shown. The vertical arrows indicate the energy of a photon with
wavelength 1064 nm. Numerical values for level energies are taken from Ref. [Krab, San08].
Level energies are not to scale.
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4.4.2. Calculation and Numerical Results

Atomic polarizabilities and RMEs are frequently given in atomic units (a.u.), where e, electron
mass me, 4πε0, and ~ have values 1. We follow this common practice in the remainder of this
Chapter. Polarizabilities in atomic units have dimension of volume and are given in units of
a3

0 in the following with Bohr radius a0. Reduced dipole matrix elements in atomic units are
given in units of ea0 here. The conversion factors from atomic units to SI units are 4πε0a

3
0 for

polarizabilities and ea0 for RMEs [Mit10].

Discussion of Atomic Input Data
The sum-over-states approach requires knowledge of atom-specific data including level ener-
gies Ek and numerical values of RMEs. For our calculation, we use existing atomic data for
potassium from different data sets. We obtain level energies of fine structure levels relative
to the 4S1/2 ground state from the NIST atomic spectra database [Krab] and the atomic data
compilation by J. E. Sansonetti [San08]. Our subset of atomic data contains level energies of
69 fine structure levels between the 4S1/2 ground state and the 14S1/2 level, as shown in Fig.
4.1. The relative uncertainties of the level energies given in the compilations vary between
∼1.5× 10−8 % (=̂ 0.000 002 cm−1) and ∼2× 10−4 % (=̂ 0.06 cm−1) for different levels.

We use numerical results for RMEs listed in a theoretical study by M. S. Safronova et al. in
Ref. [Saf13] as well as from a separate collection received from M. S. Safronova. We compare
the RMEs by M. S. Safronova with those mentioned by D. K. Nandy et al. in Ref. [Nan12] to
gain confidence in the values for RMEs for transitions to highly excited levels. Our collection
of RMEs comprises in total 142 matrix elements. Among those are RMEs for all dipole-allowed
transitions from the 5P3/2 and lower-lying levels to levels as high as 10S1/2. Reduced matrix
elements for transitions to atomic levels higher than 10S1/2 are partially missing in our data
set. Furthermore our list contains RMEs for all dipole-allowed transitions from the 5P1/2 and
5P3/2 levels to levels as high as 14S1/2. The RMEs have absolute values between 0.0051 a.u.
(for the transition 4S1/2 → 13P1/2) and 22.9280 a.u. (for the transition 5P3/2 → 4D5/2). Relative
errors stated for the RMEs range from 0.16 % (for the transition 5P3/2 → 6S1/2) up to 98.29 %
(for the transition 5P3/2 → 6D3/2) and are not stated for a couple of RMEs.

Core Polarizability and Valence-Core Polarizability
The core polarizability αc(ωL) and valence-core polarizability αvc(ωL) in Eq. (4.7) take into
account particle-hole excitations from core electrons and correct for core-excited states that
violate Pauli’s exclusion principle [Saf06, Der99]. Excitation energies of K core electrons lie
in the deep ultraviolet spectral region [Krab, San08]. Since our lattice laser frequency ωL lies
within the infrared part of the spectrum, it is far off-resonant from core excitations. Core and
valence-core contributions are therefore only weakly dependent on the laser frequency ωL in
this spectral region [Saf06, Saf13]. Values for αc(ωL) and αvc(ωL) can then be approximated by
their static values, i.e. αc(ωL) ≈ αc and αvc(ωL) ≈ αvc [Saf13].

Consistency Check: Static Polarizabilities
To verify that our calculation of frequency-dependent polarizabilities αtot(ωL) can be seen as
reliable, we perform a consistency check of our program that is used for computation. The
program is a self-written MATLAB code that was developed as part of this Thesis. It incorpo-
rates the atomic input data, uses the equations given in Sec. 4.2 and Sec. 4.3, and can also be
used to determine atomic polarizabilities at wavelengths other than the one considered here.
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Table 4.1.: Static polarizabilities. Comparison between our numerical results αc
0 and αc

2 and
reference values for static valence scalar polarizability α0 and static valence tensor polarizabil-
ity α2 for 39K given in atomic units. Numbers in brackets give uncertainties.

Safronova et al. [Saf13] Present work

Level α0 α2 αc
0 αc

2

5P3/2 7230(60) -1065(18) 7201(116) -1058(43)
5P1/2 7052(70) 7023(120)
3D3/2 1420(30) -482(19) 1371(53) -473(30)
3D5/2 1412(30) -673(23) 1346(48) -655(34)
5S1/2 4961(22) 4954(32)
4P3/2 621(4) -109.4(1.1) 603(6) -106(3)
4P1/2 612(5) 593(6)
4S1/2 290.4(6) 287(4)

For the consistency check, we numerically compute the static valence scalar and valence
tensor polarizabilities α0 and α2 for the fine structure levels 4S1/2 to 5P3/2 and compare our
results with existing reference data from Ref. [Saf13]. Table 4.1 lists our calculated values for
α0 and α2, denoted as αc

0 and αc
2, as well as the reference values. The uncertainties of αc

0 and αc
2

take into account the uncertainties of the input data, i.e. of the level energies Ek and the RMEs
and are derived from propagation of uncertainties. The smallest relative uncertainty of the
RMEs is several orders of magnitude larger than the largest relative uncertainty of the level
energies, as discussed earlier. We therefore use the largest absolute uncertainty of the level
energies to approximate the uncertainty of all level energies but consider the uncertainties for
the RMEs individually.

Our results show a clear increase of the polarizabilities for higher lying levels. This be-
havior is in agreement with the observation that more loosely bound electrons are easier to
polarize. We find that our results agree with the theoretical reference data in sign and further-
more in absolute value within ±5 %. Based on these findings, we conclude that our program
satisfies the consistency check. We attribute the discrepancy between our results and the ref-
erence data mainly to the limited atomic data that we have.

Frequency-Dependent Polarizabilities
We now calculate the frequency-dependent valence scalar and valence tensor polarizabilities
α0(ωL) and α2(ωL) of the 4S1/2, 4P1/2, 4P3/2, 5S1/2, 3D5/2, 3D3/2, 5P1/2, and 5P3/2 levels. Table
4.2 lists our results for α0(ωL) and α2(ωL), denoted as αc

0(ωL) and αc
2(ωL), as well as their

calculated uncertainties ∆αc
0(ωL) and ∆αc

2(ωL). We calculate ∆αc
0(ωL) and ∆αc

2(ωL) in the
same way as we computed the uncertainties of the static polarizabilities.

The results obtained for αc
0(ωL) and αc

2(ωL) allow the evaluation of the total atomic polar-
izability αtot(ωL) for the fine structure Zeeman states. We approximate the core and valence-
core contributions to the total atomic polarizability by their static values, which for K atoms
correspond to αc = 5.5 a.u. and αvc = −0.18 a.u. [Saf13].1 Table 4.2 summarizes our nu-
merical results αc

tot(ωL) and their uncertainties ∆αc
tot(ωL) for individual Zeeman states. The

uncertainties ∆αc
tot(ωL) consider the uncertainties ∆αc

0(ωL) and ∆αc
2(ωL) and are determined

1No uncertainties are given for αc and αvc in Ref. [Saf13].
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Table 4.2.: Frequency-dependent polarizabilities. Numerical results for the frequency-
dependent valence scalar polarizability αc

0(ωL), the frequency-dependent valence tensor po-
larizability αc

2(ωL), the total atomic polarizability αc
tot(ωL), and their uncertainties ∆αc

0(ωL),
∆αc

2(ωL), and ∆αc
tot(ωL), respectively, for 39K at 1064 nm. Reference values for αtot(ωL) are

listed where available and are given for comparison. All values are given in atomic units.

Present Present [Saf15]2

Level αc
0(ωL) ∆αc

0(ωL) αc
2(ωL) ∆αc

2(ωL) |MJ | αc
tot(ωL) ∆αc

tot(ωL) αtot(ωL)

5P3/2 -544 27 21 10 3/2 -518 37 -482.605
1/2 -560 37 -484.155

5P1/2 -587 29 1/2 -582 29 -526.372

3D3/2 -445 53 -682 22 3/2 -1122 75
1/2 242 75

3D5/2 -528 51 -855 29 5/2 -1378 80
3/2 -352 57
1/2 161 75

5S1/2 94 12 1/2 99 12

4P3/2 -2995 21 796 9 3/2 -2194 30
1/2 -3786 30

4P1/2 -3176 22 1/2 -3171 22

4S1/2 598 7 1/2 603 7 603.872

through uncertainty propagation. Reference data for the total polarizability αtot(ωL) is given
where available.

4.4.3. Discussion

We first discuss the results for the total polarizabilities αc
tot(ωL) for which no reference data is

available to compare with. According to Table 4.2, the Zeeman states of the 4P1/2 level have a
total polarizability of -3171 a.u. and the Zeeman states of the 4P3/2 level a total polarizability of
-3786 a.u. (for |MJ | = 1/2) and -2194 a.u. (for |MJ | = 3/2). The negative polarizabilities indicate
that an atom in the 4P1/2 and 4P3/2 level is attracted towards locations with minimum laser
intensity as discussed in Sec. 2.2.1. The 5S1/2 level with |MJ | = 1/2 has a total polarizability of
99 a.u., which is a factor of six smaller than the 4S1/2 ground state polarizability of 603 a.u. The
total polarizabilities of the 3D5/2 level (161 a.u. for |MJ | = 1/2, -352 a.u. for |MJ | = 3/2, -1378
a.u. for |MJ | = 5/2) and the 3D3/2 level (242 a.u. for |MJ | = 1/2 and -1122 a.u. for |MJ | = 3/2)
have positive and negative signs.

For the 4S1/2, 5P1/2, and 5P3/2 levels reference data for the total atomic polarizability exists
and is presented in Ref. [Saf13]. We obtained the numerical values of the total polarizabilities
in Ref. [Saf13] from M. S. Safronova [Saf15]. The calculated value for the 4S1/2 level (603
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a.u.) agrees reasonably well with the reference data [Saf15] in Table 4.2.2 On the contrary, the
numerical results for the 5P1/2 (-582 a.u.) and 5P3/2 (-560 a.u. for |MJ | = 1/2 and -518 a.u. for
|MJ | = 3/2) levels show a discrepancy with the reference data. In particular, the reference data
for the 5P1/2 level and the 5P3/2 Zeeman states with |MJ | = 1/2 lie without the uncertainty
boundaries of our results. We attribute this discrepancy to our limited atomic input data.

4.4.4. Upper and Lower Bounds for the Valence Polarizabilities

In order to calculate more precise values for the valence polarizability αv(ωL), we need to
include more data of atomic transitions to higher lying atomic levels into our program. Such
data, however, could not be found in literature despite an extensive research. On the other
hand, computing this data on our own through atomic structure calculations is beyond the
scope of this Thesis. We therefore analyze to which extent the computed results in Table 4.2 can
be seen as reliable. To that end, we aim at calculating the theoretical upper and lower bounds
for the valence scalar and tensor polarizability, α0(ωL) and α2(ωL), for each fine structure level.

Bounds on the Valence Scalar Polarizability
We first deal with the upper and lower bounds for the valence scalar polarizability α0(ωL). For
this purpose we rewrite Eq. (4.17) in terms of oscillator strengths. The oscillator strength fak of
a transition |γaJa〉 → |γkJk〉 is given through [Sob79]

fak =
2meωka

3~e2(2Ja + 1)
|〈γaJa‖~p‖γkJk〉|2, (4.20)

where ωka = (Ek − Ea)/~. Equation (4.17) then becomes

α0(ωL) =
~e2

me

∑
k 6=a

(Ek − Ea)
(Ek − Ea)2 − (~ωL)2

fak
ωka

. (4.21)

We split the sum in Eq. (4.21) into two sums: one sum runs over all transitions to atomic levels
|γkJk〉 for which we have the level energies Ek and the associated RMEs. This sum is indicated
through the notation

∑
k(known) . . . . The second sum runs over all transitions to atomic levels

|γk′Jk′〉 for which we possess none (or only an incomplete part) of this information. This sum
is indicated through the notation

∑
k′(unknown) . . . . Equation (4.21) can then be written as

α0(ωL) =
~e2

me

∑
k 6=a

(known)

(Ek − Ea)
(Ek − Ea)2 − (~ωL)2

fak
ωka

(4.22)

+
~e2

me

∑
k′ 6=a

(unknown)

(Ek′ − Ea)
(Ek′ − Ea)2 − (~ωL)2

fak′

ωk′a
.

Our atomic data set lacks numerical values for RMEs of transitions only to levels higher than
those for which we calculate the polarizabilities (Ek′ > Ea). The oscillator strengths fak′ and

2Uncertainties for the total atomic polarizabilities αtot(ωL) from Ref. [Saf15] are unknown to us. We therefore
estimate the uncertainty of these atomic polarizabilities to correspond to the typical uncertainty for αtot(ωL)
listed in Ref. [Saf13], which is ∆αtot(ωL) = ±1.
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energy differencesEk′−Ea in Eq. (4.22) are therefore all positive, i.e. fak′ > 0 and (Ek′−Ea) >
0. Furthermore, since the energy differences Ek′ −Ea of the missing transitions are larger than
the energy ~ωL of a 1064 nm lattice photon, the denominator of the second sum in Eq. (4.22)
is positive as well. Consequently, each term of the second sum in Eq. (4.22) is positive. Thus,
the lower bound for the valence scalar polarizability α0(ωL) of a fine structure level, denoted
as α0,min(ωL), is given through the first sum in Eq. (4.22):

α0,min(ωL) =
~e2

me

∑
k 6=a

(known)

(Ek − Ea)
(Ek − Ea)2 − (~ωL)2

fak
ωka

. (4.23)

The lower bound α0,min(ωL) hence just corresponds to the values αc
0(ωL) in Table 4.2, i.e.

α0,min(ωL) = αc
0(ωL).

To determine the upper bound α0,max(ωL) for the valence scalar polarizability α0(ωL), we
proceed as follows [Bon97]. Strictly speaking, the summations in Eqs. (4.12), (4.13), (4.17), and
(4.18) have to be replaced by a summation over all discrete, bound levels and integration over
all unbound continuum states with eigenenergies larger than the ionization threshold of the
atom. Equation (4.22) then changes to

α0(ωL) = α0,min(ωL) +
~e2

me

∑∫
k′ 6=a

(unknown)

(Ek′ − Ea)
(Ek′ − Ea)2 − (~ωL)2

fak′

ωk′a
. (4.24)

The symbol ∑∫ indicates summation over all bound levels and integration over all continuum
states for which we do not possess the level energies Ek′ and RMEs. We approximate the
energies Ek′ with the energy of the energetically lowest atomic state that is not included in the
atomic data set, Elowest = min{Ek′}. In our case, this is the 12F1/2 fine structure level. This
approximation leads to the inequality

α0(ωL) < α0,min(ωL) +
~2e2

me

1

(Elowest − Ea)2 − (~ωL)2

∑∫
k′ 6=a

(unknown)

fak′ . (4.25)

For an atom with one active electron and within an initial atomic level |γaJa〉 the relation
[Her15]

∑∫
k

fak = 1 (4.26)

applies. Here, the summation (integration) runs over all discrete, bound levels (continuous,
unbound levels) |γkJk〉. Equation (4.26) is known as Thomas-Reiche-Kuhn sum rule. We divide
the sum in Eq. (4.26) into two terms fknown and funknown that contain the known oscillator
strengths of our atomic data set and the unknown oscillator strengths, respectively. The two
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terms fknown and funknown are defined through

fknown =
∑
k 6=a

(known)

fak and funknown =
∑∫
k′ 6=a

(unknown)

fak′ . (4.27)

We write Eq. (4.26) in the form

∑∫
k

fak = fknown + funknown = 1. (4.28)

With Eqs. (4.28) and (4.25) the upper bound α0,max(ωL) can then be calculated through

α0,max(ωL) = α0,min(ωL) +
~2e2

me
· 1− fknown

(Elowest − Ea)2 − (~ωL)2
. (4.29)

We obtain as upper bounds for the valence scalar polarizability 598 a.u. (for the 4S1/2 level),
-3136 a.u. (for the 4P1/2 level), -2955 a.u. (for the 4P3/2 level), 100 a.u. (for the 5S1/2 level), -218
a.u. (for the 3D5/2 level), -144 a.u. (for the 3D3/2 level), 1408 a.u. (for the 5P1/2 level), and 1640
a.u. (for the 5P3/2 level). These values do not incorporate the uncertainties ∆αc

0(ωL) from Table
4.2, which simply add up. The upper bounds for the valence scalar polarizability of the higher
atomic states deviate significantly from the calculated polarizabilities αc

0(ωL). This deviation
indicates that further atomic input data is needed to refine the calculated values αc

0(ωL).

Bounds on the Valence Tensor Polarizability
The factor (−1)Ja+Jk+1 and the Wigner 6J-symbol in Eq. (4.18) lead to an alternating sign of the
terms within the sum. The determination of an upper and lower bound for the valence tensor
polarizability α2(ωL) hence requires additional approximations than those for the bounds of
the valence scalar polarizability. We therefore first rewrite Eq. (4.18) as

α2(ωL) = αc
2(ωL)− 4C

∑∫
k′ 6=a

(unknown)

(−1)Ja+Jk′+1

{
Ja 1 Jk′

1 Ja 2

}
(Ek′ − Ea)

(Ek′ − Ea)2 − (~ωL)2
(4.30)

× |〈γaJa||~p||γk′Jk′〉|2 .

We replace the Wigner-6J symbol by the maximum absolute value it takes for transitions be-
tween states with Ja ∈ {1/2, 3/2, 5/2} and Jk′ ∈ {1/2, 3/2, 5/2, 7/2}. Additionally, we substi-
tute the factor (−1)Ja+Jk′+1 with its absolute value. Through these simplifications the terms
within the sum (integral) in Eq. (4.30) are all positive and thus add up. We then obtain a lower
bound (α2,min(ωL)) and an upper bound (α2,max(ωL)) for the frequency-dependent valence ten-
sor polarizability through

α2,min(ωL) = αc
2(ωL)− G, (4.31)

α2,max(ωL) = αc
2(ωL) + G (4.32)
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with

G = 4C ·
∣∣∣∣max

[{
Ja 1 Jk′

1 Ja 2

}]∣∣∣∣ · 1− fknown(
Elowest − Ea

)2 − (~ωL)2
· 3~2e2(2Ja + 1)

2me
. (4.33)

The previous simplifications lead to the following values for G: 40 a.u. (for the 4P3/2 level),
354 a.u. (for the 3D5/2 level), 301 a.u. (for the 3D3/2 level), and 2183 a.u. (for the 5P3/2 level).
The given values for G do not incorporate the uncertainties ∆αc

2(ωL) from Table 4.2, which
simply add up. To obtain narrower bounds on α2(ωL), it might be helpful to estimate the
contributions of individual atomic transitions for which we do not possess the RMEs in Eq.
(4.30) to the valence tensor polarizability. Such estimations could be obtained by extrapolating
values for missing RMEs from fits of analytical functions to plots that show available RMEs as
a function of the associated transition frequency ωka.
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5. Simulation of Violet Fluorescence
Imaging and Laser Cooling of
Trapped 39K Atoms

Violet fluorescence quantum gas microscopy of 39K atoms will allow for fluorescence images
with enhanced spatial resolution in future experiments of the K−Cs apparatus. As the 39K
atoms are trapped within potential wells of an optical lattice during fluorescence imaging,
their motional states are quantized. We intend to take advantage of the quantized motional
states by cooling the atoms during imaging via EIT cooling [Mor00, Mor03]. Electromagneti-
cally-induced transparency cooling has been first demonstrated for trapped ions [Roo00] and
recently for 40K atoms during fluorescence quantum gas microscopy [Hal15, Edg15]. In this
Chapter, we simulate violet fluorescence imaging of trapped 39K atoms within a 1064 nm-light
optical lattice on the 4S1/2 → 5P3/2 transition and simultaneous EIT cooling on the 4S1/2 →
4P3/2 transition. The simulation allows us to estimate the increase in energy of the trapped
39K atoms during imaging. Furthermore, the expected number of scattered violet fluorescence
photons can be calculated from the simulation. For the sake of simplicity, we consider only the
fine structure of 39K within this Chapter.

5.1. Level Scheme of 39K

A 39K atom that is excited into the 5P3/2 level with a laser that is resonant with the 4S1/2 →
5P3/2 transition can decay back into the 4S1/2 ground state through six different decay chan-
nels. Figure 5.1 shows a reduced level scheme of 39K and depicts the fine structure together
with the possible decay channels from the 5P3/2 level. The level scheme indicates that in five
out of the six decay channels (i.e. in about 84 % of all decay events), the atom decays cascade-
like from the 5P3/2 level into the 4S1/2 ground state via two intermediate levels. In these cases,
the atom emits three photons in the red and infrared spectral range. In only one decay channel
(i.e. in about 16 % of all decay events) the excited atom decays via the direct 5P3/2 → 4S1/2 tran-
sition, which generates a single violet fluorescence photon. The 4S1/2 → 5P3/2 transition has a

line width Γ4S1/2→5P3/2
/2π = 184.6 kHz and a saturation intensity I

4S1/2→5P3/2

sat = 57.6 mW/cm2

[Han15]. The maximum rate at which violet fluorescence photons can be scattered during
imaging is Γ4S1/2→5P3/2

/2 ≈ 5.8× 105 s−1. This rate is more than thirty times smaller than the
maximum fluorescence rate of the 4S1/2 → 4P1/2 and 4S1/2 → 4P3/2 transitions.

During the decay processes from the 5P3/2 level a 39K atom temporarily occupies dif-
ferent atomic states. Since the atom experiences different optical lattice potentials in each of
these atomic states (see discussion in Ch. 4), the potential well experienced by the atom in
its ground state can be more strongly or weakly confining or even inverted in excited atomic
states. The state-dependent, and for the atoms thus time-dependent, optical lattice potential
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s p d

4S1/2

4P1/2

4P3/2

5S1/2

3D5/2

3D3/2

5P1/2

5P3/2

769.9 nm
3.75× 107 s−1

766.5 nm
3.80× 107 s−1

404.4 nm
1.16× 106 s−1

1243.2 nm
7.9× 106 s−1

1252.2 nm
1.56× 107 s−1

1177.3 nm
2.59× 107 s−1

1169.0 nm
2.20× 107 s−1

1177.0 nm
4.34× 106 s−1

2707.4 nm
4.6× 106 s−1

3139.3 nm
1.4× 106 s−1

3141.5 nm
1.5× 105 s−1

Figure 5.1.: Fine structure of 39K. Shown are the fine structure levels between the 4S1/2 ground
state and the 5P3/2 level. The colored lines indicate dipole-allowed transitions. Quoted values
correspond to transition wavelengths and transition rates [Kraa]. Level spacings are not to
scale.

possibly heats the trapped 39K atoms. To mitigate heating, we plan to perform EIT cooling on
the 4S1/2 → 4P1/2 transition while imaging.

The nuclear spin ~I of 39K gives rise to a hyperfine structure in the level scheme. Figure
5.2 shows the hyperfine levels of 39K, which are specified through the total angular momentum
quantum number F . The splitting of hyperfine levels becomes increasingly narrow for higher-
lying fine structure levels. The splitting of the 5P3/2 hyperfine levels is between 1 and 7 MHz
and thus comparable to the decay rate Γ5P3/2

of the 5P3/2 level, which is Γ5P3/2
/2π = 1.16 MHz

[Kraa]. Since therefore not all 5P3/2 hyperfine levels can be resolved, we neglect the hyperfine
structure of 39K in a first order approximation within this Chapter.

5.2. General Considerations

Prior to violet fluorescence imaging each 39K atom will reside in its internal ground state and
will be deeply confined to a single site of an optical lattice potential. At this stage, each atom
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s p d

4S1/2

F = 1 (−288.6 MHz)

F = 2 (+173.1 MHz)

4P1/2

F = 1 (−34.7 MHz)

F = 2 (+20.8 MHz)

4P3/2

F = 0 (−19.4 MHz)
F = 1 (−16.1 MHz)
F = 2 (−6.7 MHz)

F = 3 (+14.4 MHz)

5S1/2

F = 1 (−69.4 MHz)

F = 2 (+41.6 MHz)

3D5/2

F = 1 (−3.1 MHz)
F = 2 (−2.1 MHz)
F = 3 (−0.3 MHz)

F = 4 (+2.4 MHz)

3D3/2

F = 0 (−3.1 MHz)
F = 1 (−2.6 MHz)
F = 2 (−1.0 MHz)
F = 3 (+2.3 MHz)

5P1/2

F = 1 (−11.2 MHz)

F = 2 (+6.7 MHz)

5P3/2

F = 0 (−6.3 MHz)
F = 1 (−5.2 MHz)
F = 2 (−2.1 MHz)
F = 3 (+4.7 MHz)

769.9 nm

404.4 nm

Figure 5.2.: Hyperfine structure of 39K. Numbers in brackets give the frequency shift of hy-
perfine structure levels relative to the associated fine structure levels. Frequency shifts were
calculated with data from Ref. [San08]. Level spacings are not to scale.
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occupies the vibrational ground state of its harmonic on-site potential. In the course of flu-
orescence imaging, each time a 39K atom transitions into an other internal state the atomic
wavefunction is projected onto the eigenfunctions of the new lattice potential experienced by
the atom. After one absorption-emission cycle the 39K atom is again in its internal ground state,
however, does not necessarily occupy the vibrational ground state of the on-site potential any-
more. Instead, the atom might end up in a vibrational state with higher energy. We consider
this transfer into higher vibrational states as heating of the atom. In this Section, we outline
the model that we use to describe the dynamics of a trapped 39K atom during fluorescence
imaging.

5.2.1. Model for the Simulation

We consider a single 39K atom that is confined to a lattice site of a 1D optical lattice poten-
tial. We restrict the discussion to one spatial dimension, namely the lattice axis along the
x−direction. We assume that the optical lattice is generated by laser light of frequency ωL and
that it has a lattice depth V0,1D for the atom in its internal ground state that is large enough to
approximate the on-site lattice potential with a harmonic potential. The atom is then described
by the Hamiltonian

Ĥtot = Ĥatom + Ĥmotion, (5.1)

where Ĥatom is the Hamiltonian of the unperturbed atom and Ĥmotion describes the center-of-
mass motion of the atom within the harmonic on-site potential. If the atomic fine structure
states |ϕk〉 = |γkJkMJ,k〉 have eigenenergies Ek, the Hamiltonian Ĥatom can be expressed as

Ĥatom =
∑
k

Ek|ϕk〉〈ϕk|. (5.2)

The second term in Eq. (5.1), Ĥmotion, is given by [Mes65b]

Ĥmotion =
p̂2
x

2m
+

1

2
mω2

x,kx̂
2 − V k

0,1D1, (5.3)

where p̂x is the momentum operator1, x̂ is the Cartesian x−component of the position vector
operator r̂, 1 is the identity operator, and V k

0,1D is the state-dependent lattice depth. The on-site
trapping frequency ωx,k depends on the atomic polarizability αtot,k(ωL) and thus on the atomic
state |ϕk〉. It is given through

ωx,k =
Erec

~

√
8αtot,k(ωL)P

cε0πw2
0Erec

. (5.4)

If the atomic polarizability αtot,k(ωL) of the atom in state |ϕk〉 is positive (αtot,k(ωL) > 0), ωx,k is
positive as well and the on-site lattice potential corresponds to that of a harmonic oscillator. If
the polarizability αtot,k(ωL) is negative (αtot,k(ωL) < 0), ωx,k becomes imaginary (ωx,k → iωx,k)

1Here, p̂x is the momentum operator and should not be confused with the electric-dipole moment operator in
Chapter 4.
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|ϕk′〉

|ϕk〉

|ϕk′′〉

Ek′

EkEk′′
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|0〉
|1〉
|2〉

TkN,k′N ′

~ωx,k

~ωx,k′

~ωx,k′′

Figure 5.3.: Energy spectrum of a harmonically trapped atom with only positive atomic po-
larizabilities. An atom in state |ϕk〉 with eigenenergy Ek and positive atomic polarizability
αtot,k(ωL), trapped at a lattice site of an optical lattice, experiences a harmonic on-site po-
tential with trapping frequency ωx,k. Transitions from a state |ϕk, N〉 into a state |ϕk′ , N ′〉
(αtot,k′(ωL) > 0) take place at a rate TkN,k′N ′ .

and the harmonic potential is inverted. As the fine structure Zeeman states of 39K have positive
as well as negative atomic polarizabilities (see Table 4.2), we next discuss how we describe the
dynamics of the trapped atom in these two cases.

5.2.2. Positive Atomic Polarizability (Harmonic Oscillator On-Site Potential)

If the atom is in a state |ϕk〉 with positive atomic polarizability αtot,k(ωL), the Hamiltonian
Ĥmotion in Eq. (5.3) can be written as [Mes65b]

Ĥmotion = ~ωx,k
(
N̂ +

1

2

)
− V k

0,1D1 (5.5)

with N̂ being the number operator. The eigenstates of Ĥmotion are Fock states |N〉with eigenen-
ergies [Mes65b]

Ek,N = ~ωx,k(N + 1/2)− V k
0,1D (5.6)

andN being the integer (non-negative) vibrational quantum number. With this, the eigenstates
of Ĥtot in Eq. (5.1) are product states |ϕk, N〉 = |ϕk〉|N〉. If we restrict ourselves to atomic states
|ϕk〉 with positive atomic polarizabilities, the energy spectrum of that subspace corresponds
to that of harmonic oscillators with trapping frequencies ωx,k, which are shifted in energy by
Ek − V k

0,1D. Figure 5.3 illustrates the resulting energy spectrum.
Transitions from an initial state |ϕk, N〉 to another state |ϕk′ , N ′〉 can take place via opti-

cal dipole transitions. The rate at which such transitions occur, TkN,k′N ′ , can be written as a
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(a) (b)
cap electrode

cap electrode

ring electrode

potential hill

~B

Figure 5.4.: Penning trap. (a) Schematic drawing of a Penning trap with magnetic field ~B.
(b) The motion of a charged particle within a Penning trap consists of a harmonic oscillation
in axial direction (up and down), a magnetron motion (dotted line), and a cyclotron motion
(circular arrow).

product of the transition rate Akk′ for the atomic transition |ϕk〉 → |ϕk′〉 and the probability
|FN→N ′ |2 for the vibrational transition |N〉 → |N ′〉 [Esc03, Lei03]:

TkN,k′N ′ = Akk′ · |FN→N ′ |2. (5.7)

The mathematical expressions for the factors Akk′ and FN→N ′ are discussed in Sec. 5.3.

5.2.3. Negative Atomic Polarizability (Inverted Harmonic Oscillator On-Site
Potential)

If the atom in state |ϕk〉 has a negative atomic polarizability (αtot,k(ωL) < 0), the on-site trap-
ping frequency ωx,k in Eq. (5.3) has to be replaced according to ωx,k → iωx,k. This substitution
turns the harmonic on-site potential into an inverted harmonic on-site potential. To describe
the motion of the atom within an inverted harmonic oscillator potential, one has to find the as-
sociated eigenfunctions. The Schrödinger equation of the inverted oscillator is exactly solvable
and has two solutions [Yuc06]. One solution is a plane wave solution whereas the second solu-
tion corresponds to a particle confined into an expanding box. The substitution ωx,k → iωx,k,
however, cannot be used to find the eigenenergies of the inverted oscillator with Eq. (5.6)
[Yuc06] as the Hamiltonian Ĥmotion in Eq. (5.3) would have imaginary eigenenergies other-
wise.

An atom within an inverted harmonic oscillator potential has similarities with a charged
particle within a Penning trap. Figure 5.4(a) depicts the schematic setup of a Penning trap. The
motion of a charged particle within a Penning trap can be divided into a harmonic oscillation
in axial direction and a combined cyclotron and magnetron motion in radial direction. The
magnetron motion of the particle describes a circular orbit about an effective, radial potential
hill [Bro86]. Figure 5.4(b) illustrates the horizontal motion of a charged particle within a Pen-
ning trap. Excitation of the magnetron motion increases the radius of the magnetron orbit and
causes the particle to move down the potential hill. The eigenstates of the magnetron motion
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−~ωx,k
|0〉

|1〉
|2〉

Figure 5.5.: Inverted harmonic oscillator potential. Within our approximation, the eigenstates
of the 1D inverted harmonic oscillator are harmonic oscillator states |N〉. For increasing vibra-
tional quantum number N , the energy of the oscillator states |N〉 decreases in this case.

are harmonic oscillator states with eigenenergies given by [Bro86]

Emagnetron = −~ωmagnetron

(
l +

1

2

)
, (5.8)

where the quantum number l is a positive integer.
To describe the motion of a 39K atom within an inverted harmonic on-site potential, we

use the picture of the magnetron motion. We assume that the eigenstates of the 39K atom in
the 1D inverted harmonic potential are harmonic oscillator states |N〉, whose eigenenergies are
obtained by replacing ωx,k in Eq. (5.6) by −ωx,k. Figure 5.5 illustrates that within our inverted
oscillator approximation the energy of the harmonic oscillator states decreases with increasing
quantum number N .

We calculate the rates TkN,k′N ′ for transitions between two states |ϕk, N〉 and |ϕk′ , N ′〉 of
which at least one state has a negative atomic polarizability analogously to those rates in Eq.
(5.7) for atomic states with positive atomic polarizability.

5.3. Transition Rates of a Trapped Atom

During violet fluorescence imaging the trapped 39K atom is continuously transfered between
different atomic states |ϕk〉 through absorption, stimulated emission, and spontaneous emis-
sion. For each transition type, the Akk′ factor in Eq. (5.7) is different. We give mathematical
expressions for the Akk′ factor for all three types of dipole transitions. Furthermore, we give
mathematical expressions for theFN→N ′ factor for vibrational transitions. We use the obtained
expressions thereafter to set up rate equations in Sec. 5.5.

5.3.1. Absorption

In our simulation, the imaging laser leads to absorption on the 4S1/2 → 5P3/2 transition. We
assume that the imaging laser has a center frequency ωc, an area-normalized line shape function
L(ωc − ω), and a frequency-integrated intensity Itot. The factor Akk′ for absorption is then given
by [Hil82]

Aabs = Bω
abs

∫ +∞

0
g(ωkk′ − ω)ρ(ωc − ω)dω, (5.9)
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where the factor Bω
abs is the Einstein B coefficient for absorption.2 The function ρ(ωc − ω) in Eq.

(5.9) is the energy density per unit angular frequency given by [Hil82]

ρ(ωc − ω) =
Itot

c
L(ωc − ω). (5.10)

The function g(ωkk′ − ω) in Eq. (5.9) is the area-normalized line shape function of the atomic
transition |ϕk〉 → |ϕk′〉with transition frequency ωkk′ = (Ek′ − Ek)/~. It is given by [Dem08]

g(ωkk′ − ω) =
1

π
· Γk′/2

(ωkk′ − ω)2 + (Γk′/2)2
, (5.11)

where Γk′ is the decay rate of the excited state |ϕk′〉. If the laser line width is much smaller
than the line width of the atomic transition, Eq. (5.9) can be approximately written as

Aabs ≈
Bω

absItot

c
· 1

π
· Γk′/2

(ωkk′ − ωc)2 + (Γk′/2)2
. (5.12)

The factor Aabs corresponds to the photon absorption rate.

5.3.2. Stimulated Emission

The imaging laser causes also stimulated emission on the 5P3/2 → 4S1/2 transition, for which
the factor Akk′ is given by [Hil82]

Astim
emi = Bω

emi

∫ +∞

0
g(ωkk′ − ω)ρ(ωc − ω)dω, (5.13)

where the factor Bω
emi is the Einstein B coefficient for stimulated emission. Analogously to Eq.

(5.12), Eq. (5.13) can be approximated by

Astim
emi ≈

Bω
emiItot

c
· 1

π
· Γk′/2

(ωkk′ − ωc)2 + (Γk′/2)2
. (5.14)

If |ϕk〉 and |ϕk′〉 are not degenerate, the Einstein B coefficients for stimulated absorption and
stimulated emission are identical (Bω

abs = Bω
emi) [Dem08] and thereforeAabs = Astim

emi . The factor
Astim

emi corresponds to the stimulated photon emission rate.

5.3.3. Spontaneous Emission

Spontaneous emission occurs in our simulation from every excited atomic state. The factor
Akk′ for spontaneous emission is given by [Axn04]

Asp
emi =

|ωkk′ |3

3πε0~c3
|〈ϕk|~uξ · ~p|ϕk′〉|2 , (5.15)

2The superscript ω in the notation of the Einstein B coefficient indicates that its definition through Eq. (5.9)
requires ρ(ω) to be given in units of energy density per unit angular frequency.
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where 〈ϕk|~uξ ·~p|ϕk′〉 is the dipole transition matrix element and ~uξ is the spherical polarization vector
of the emitted photon. The subscript ξ indicates the polarization of the photon. It is zero for
linear polarization, ξ = 0, and for circular polarization ξ = ±1. The spherical vectors ~uξ are
given by [Met99]

~u−1 =
(~ex − i~ey)√

2
, (5.16)

~u0 = ~ez, (5.17)

~u+1 = − (~ex + i~ey)√
2

. (5.18)

Equation (5.15) corresponds to Fermi’s Golden rule and Asp
emi is the Einstein A coefficient.

The Wigner-Eckart theorem allows us to evaluate the matrix element 〈γkJkMJ,k|~uξ · ~p|γk′Jk′MJ,k′〉
in Eq. (5.15) according to [Jud77]

〈γkJkMJ,k|~uξ · ~p|γk′Jk′MJ,k′〉 = (−1)Jk−MJ,k

(
Jk 1 Jk′

−MJ,k ξ MJ,k′

)
〈γkJk||~p||γk′Jk′〉. (5.19)

The first two factors in Eq. (5.19) depend on MJ,k and MJ,k′ and thus constitute the angular
part of the transition dipole matrix element. The factor enclosed in round brackets (: : :) is a
Wigner 3J-symbol. Three-J symbols are used in quantum mechanics to express Clebsch-Gordon
coefficients in angular momentum coupling of two separate systems. Three-J symbols can be
computed with the Racah formula [Mes65b]. The reduced matrix element 〈·||~p||·〉 depends
neither on MJ,k, MJ,k′ , and ξ and is thus identical for all dipole transitions between two fine
structure levels. It represents the radial part of the transition dipole matrix element. The
Einstein coefficient Asp

emi relates to the Einstein coefficient Bω
emi through [Dem08]

Bω
emi =

π2c3

~ω3
kk′
Asp

emi. (5.20)

5.3.4. Vibrational Transition Probabilities

To find mathematical expressions for the factor FN→N ′ in Eq. (5.7), we define the parameter
[Ste86]

η =
2π

λkN,k′N ′

√
~

2mωx,k
, (5.21)

where λkN,k′N ′ is the transition wavelength of the transition |ϕk, N〉 → |ϕk′ , N ′〉. The parame-
ter η is denoted as Lamb-Dicke parameter. With Eq. (5.21) the factor FN→N ′ is given by [Win79,
Cah69]

FN→N ′ = exp

[
−η

2

2

]
(iη)|∆N | L

|∆N |
N<

(
η2
)√ N<!

(N< + |∆N |)!
, (5.22)
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where N< = min{N,N ′}, ∆N = N ′ − N , and L
|∆N |
N<

(η2) denotes the associated Laguerre
polynomials [Lei03, Win79]

L
|∆N |
N<

(η2) =

N<∑
l=0

(−1)l
(
N< + |∆N |
N< − l

)
η2l

l!
. (5.23)

For vibrational transitions |N〉 → |N ′〉 with ∆N ∈ {0,±1,±2}, Eq. (5.22) approximated to
second order in η yields:

FN→N+2 ≈ −
1

2
η2
√

(N + 2)(N + 1), (5.24)

FN→N+1 ≈ iη
√
N + 1, (5.25)

FN→N ≈ 1− η2

(
N +

1

2

)
, (5.26)

FN→N−1 ≈ iη
√
N, (5.27)

FN→N−2 ≈ −
1

2
η2
√
N(N − 1). (5.28)

5.3.5. Calculation of Transition Rates

We calculate the transition rate TkN,k′N ′ for every possible transition |ϕk, N〉 → |ϕk′ , N ′〉within
our simulation. To that end, we determine the corresponding factorsAkk′ and FN→N ′ for each
transition and multiply them according to Eq. (5.7). Since the imaging laser only acts on the
4S1/2 → 5P3/2 transition, absorption and stimulated emission processes have to be taken into
account only for these two levels. We use the obtained transition rates TkN,k′N ′ to set up rate
equations for the population probabilities of the individual states |ϕk, N〉 in Sec. 5.5.

5.4. Electromagnetically-Induced Transparency Cooling

In this Section, we summarize EIT and how it can be used to cool trapped atoms. Furthermore,
we give rate equations for the temporal evolution of the population probabilities of vibrational
states during EIT cooling. Reviews on EIT and EIT cooling can be found in Ref. [Fle05, Mor00,
Mor03].

5.4.1. Electromagnetically-Induced Transparency

We consider a free atom with two internal ground or meta stable states, labeled |g1〉 and |g2〉,
and one excited state |e〉 with decay rate Γe. Two laser beams couple the states |g1〉 and |g2〉
to the excited state |e〉 leading to a Λ-scheme. Figure 5.6 shows the involved atomic levels
and lasers. One intense laser, denoted as coupling laser, is blue detuned from the |g2〉 → |e〉
transition (Rabi frequency Ωcouple, wave vector ~kcouple, detuning ∆couple > 0). A second laser,
denoted as probe laser, has a variable detuning ∆probe from the |g1〉 → |e〉 transition and probes
the absorption of the atom (Rabi frequency Ωprobe, wave vector ~kprobe). Dipole transitions
between |g1〉 and |g2〉 are forbidden for parity reasons. The coupling laser induces level mixing
of the bare atomic states. The new eigenstates are the dressed states |+〉, |−〉, and |g〉. The
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Figure 5.6.: Λ−level scheme for EIT. A coupling laser (green arrow) couples the ground state
|g2〉 to the excited state |e〉 with detuning ∆couple > 0 and Rabi frequency Ωcouple. It thus
creates dressed states |+〉, |−〉, and |g〉. The dressed states |+〉 and |−〉 are shifted in frequency
by ±δshift. A probe laser (pink arrow) probes the absorption of the driven atom with variable
detuning ∆probe and Rabi frequency Ωprobe. The inset shows the absorption of the probe light
as a function of its detuning ∆probe.

dressed state |+〉 is lowered in energy by the ac Stark shift ~δshift caused by the coupling laser.
The light shift is given through [Mor00]

δshift =

√
∆2

couple + Ω2
couple −∆couple

2
. (5.29)

In contrast, the dressed state |−〉 is lifted by ∆couple + δshift relative to |e〉. By sweeping
the detuning ∆probe around ∆probe = ∆couple (two-photon resonance) the probe laser samples
the absorption spectrum of the driven atom. The inset of Fig. 5.6 depicts the resulting ab-
sorption spectrum as a function of ∆probe. The absorption spectrum has three distinct features:
two absorption peaks and one absorption minimum with zero absorption. The broader peak
corresponds to absorption on the transition |g〉 → |+〉 and has a width Γ+ of approximately
Γ+ ' Γe. The narrow peak emerges from absorption on the transition |g〉 → |−〉 and has a
width Γ− � Γe [Mor00]. For ∆probe = ∆couple, the two excitation paths from |g1〉 and |g2〉 in-
terfere destructively and thus the absorption is zero. The atom in state |g〉 becomes transparent
for the probe light and thus EIT is achieved.

5.4.2. EIT Cooling of a Trapped Atom

If the atom considered in the previous Sec. 5.4.1 is trapped within a harmonic potential with
trapping frequency ωsite, each dressed state |g〉, |+〉, and |−〉 unfolds into a manifold of states
with different vibrational states |N〉. Figure 5.7 shows the level scheme of the trapped atom.
If ωsite � Γe, the vibrational states of the dressed state |−〉 are well resolved. By choosing
∆probe = ∆couple and tuning δshift such that δshift = ωsite, the transition |g,N〉 → |−, N − 1〉 is
brought into resonance with the probe laser. For this parameter setting, Fig. 5.8 indicates the
absorption for transitions from state |g,N〉 to the states |−, N − 1〉, |−, N〉, and |−, N + 1〉.
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|g,N + 1〉
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|g,N − 1〉
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|−〉
δshift = ωsite
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Figure 5.7.: EIT cooling of a trapped atom. (a) Level energies of bare atomic states (gray
lines) and dressed states (black lines) for EIT for a free atom. The coupling laser is indicated
through a green arrow, the probe laser is represented by a pink arrow. (b) Level energies for
a trapped atom. Each dressed state of (a) unfolds into a manifold of equidistant states with
different vibrational quantum number N . If δshift = ωsite, the probe laser drives transitions
|g,N〉 → |−, N − 1〉 (straight brown arrow). If η � 1, the atom in state |−, N − 1〉 decays most
likely into state |g,N − 1〉 (wavy brown arrow).

The individual transitions have absorption rates that significantly differ from each other.
The narrow absorption peak in Fig. 5.8 corresponds to absorption on the transition |g,N〉 →
|−, N−1〉 (red-sideband transition). If η � 1 (Lamb-Dicke regime), spontaneous emission from
the excited |−, N − 1〉 state appears predominantly on the transition |−, N − 1〉 → |g,N − 1〉
(carrier transition). For a carrier transition, the vibrational quantum number N is preserved.
A red-sideband transition followed by a carrier transition (|g,N〉 → |−, N − 1〉 → |g,N − 1〉)
thus lowers the vibrational quantum number N of the atom by one and represents one cooling
cycle. Transitions like |g,N〉 → |−, N〉, which lead to diffusion, or |g,N〉 → |−, N + 1〉 (blue-
sideband transition), which lead to heating, are extinguished or attenuated compared to the
cooling transition [Mor00]. Since cooling events occur at a higher rate than heating events, EIT
cooling allows cooling of the trapped atom close to the vibrational ground state.

Electromagnetically-induced transparency cooling redistributes the atomic population
in the vibrational states towards lower vibrational states. The probability P (N) to find the
trapped atom within the vibrational state |N〉 of the electronic ground state |g〉 thus varies
with time. In the Lamb-Dicke regime, the temporal evolution of P (N) can be modeled with
rate equations. If Ωprobe � Ωcouple and provided that the probe laser does not saturate the
transition |g〉 → |−〉, the rate equation for the population probability of state |g,N〉 becomes
[Mor00]

Ṗ (N) = η2
2{A− [(N + 1)P (N + 1)−NP (N)] +A+ [NP (N − 1)− (N + 1)P (N)]}. (5.30)

76



5.5. Simulation

ab
so

rp
ti

on
(a

rb
it

ra
ry

un
it

s)

(∆probe −∆couple)/ωsite
|g
,N
〉→
|−
,N
−

1
〉

|g
,N
〉→
|−
,N
〉

|g
,N
〉→
|−
,N

+
1
〉

0 1 2-1-2 3 4-3

Figure 5.8.: Absorption spectrum for EIT cooling. Shown is the absorption of the probe laser.
If δshift = ωsite, transitions from state |g,N〉 to the excited states |−, N−1〉, |−, N〉, and |−, N+1〉
(vertical dotted lines) have different absorption strengths. Because of EIT, absorption on the
transition |g,N〉 → |−, N〉 is extinguished.

The parameter η2 is defined as [Mor00]

η2 =
∣∣∣~kprobe − ~kcouple

∣∣∣ ·Υ, (5.31)

where Υ denotes the root-mean-square size of the harmonic oscillator ground state wave func-
tion. The parameter η2 is known as two-photon Lamb-Dicke parameter. The coefficients A± in Eq.
(5.30) are given by [Mor00]

A± =
Ω2

probe

Γe

Γ2
eω

2
site

Γ2
eω

2
site + 4[Ω2

couple/4− ωsite(ωsite ∓∆couple)]2
. (5.32)

Note, that even for unresolved sidebands (Γe � ωsite) EIT cooling of trapped atoms works and
Eq. (5.30) and Eq. (5.32) remain valid [Mor00].

5.5. Simulation

To study the dynamics of the trapped 39K atoms during violet fluorescence quantum gas mi-
croscopy and simultaneous EIT cooling on the principal D1 transition, we numerically com-
pute the evolution of the population probabilities Pk(N, t) of the vibrational states |N〉 for each
atomic state |ϕk〉. For this purpose, we consider a single trapped 39K atom representative for
all 39K atoms within the optical lattice and take into account all fine structure Zeeman states
|ϕk〉 = |γkJkMJ,k〉 between the 4S1/2 and 5P3/2 level.
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5.5.1. Assumptions and Initial Conditions of the Simulation

The starting point of our simulation is a 39K atom within a single well of a 1D optical lattice
potential (λL = 1064 nm) in one dimension. Initially, the atom is in one of its two internal
ground states, namely in state |4S1/2,MJ=1/2〉. The lattice depth that the atom experiences
in this state is assumed to be V0,4S1/2 = 1000 Erec. A similarly deep lattice was used during
fluorescence imaging of EIT-cooled 40K atoms in a previous experiment [Edg15]. Such a deep
lattice justifies a harmonic approximation of the on-site lattice potential. The on-site trapping
frequency for a ground state 39K atom then equals ωx,4S1/2 = 2π× 286 kHz. A 1D harmonic
oscillator with trapping frequency ωx,4S1/2 has sixteen vibrational states |N〉, whose energies
EN are smaller than the lattice depth V0,4S1/2. We calculate the on-site trapping frequencies
ωx,k of the excited atomic states |ϕk〉 by means of the total polarizabilities αc

tot(ωL) from Ch. 4.
At the beginning of the simulation, we assume the atom within the vibrational ground

state |N=0〉 of the lattice site, i.e. the initial state of the atom is |4S1/2,MJ = 1/2, N = 0〉. At
t = 0, a violet imaging laser along the lattice axis starts to excite the 39K atom from the 4S1/2

level into the 5P3/2 level. The laser line width Γlaser is assumed to be Γlaser = 2π×100 kHz,
which is smaller than the line width of the 5P3/2 level (Γlaser/Γ5P3/2 � 1). We furthermore
assume that the laser light has linear polarization and that it is resonant with the transition
|4S1/2,MJ=1/2;N=0〉 → |5P3/2,MJ=1/2;N=0〉. The laser intensity Itot in our calculation
corresponds to the saturation intensity of the 4S1/2 → 5P3/2 transition, i.e. Itot = Isat. In our
simulation, EIT cooling is assumed to take place on the principal D1 transition. The parameters
for EIT cooling considered are those with which EIT cooling of trapped 40K atoms was experi-
mentally demonstrated in Ref. [Hal15], namely Ωcouple = 2π×4.8 MHz, Ωprobe = 2π×1.6 MHz,
and ∆ = 10Γ4P1/2. With these values the coefficients A+ and A− in Eq. (5.32) become A+ =
3.78× 103 s−1 and A− = 1.49× 104 s−1.

5.5.2. Setting Up the Rate Equations

We calculate the temporal evolution of the population probabilities Pk(N, t) for each state
|ϕk, N〉 with N ∈ {0, 1, 2, . . . , 12} through rate equations. To set up the rate equation for
Pk(N, t) of a given state, we sum up all contributions from processes that lead to popula-
tion transfer out of this state or into it. These processes include fluorescence imaging, which
causes absorption as well as stimulated and spontaneous emission, and EIT cooling. We there-
fore use the mathematical expressions for the transition rates TkN,k′N ′ from Sec. 5.3.5 and
Eq. (5.30). We exemplify the structure of the resulting rate equations by giving the explicit
form of the rate equation for the population probability of the |4S1/2,MJ=1/2;N=0〉 state, i.e.
P4S1/2,1/2(N=0, t), which reads

Ṗ4S1/2,1/2(N=0, t) =−A4S1/2→5P3/2
abs · P4S1/2,1/2(N=0, t)

∑
N ′

|FN=0→N ′ |2

+Astim,5P3/2→4S1/2
emi

∑
N ′

|FN ′→N=0|2 · P5P3/2,1/2(N ′, t)

+
1

3

∑
k′′,N ′′

Asp,k′′→4S1/2
emi · |FN ′′→N=0|2 · Pk′′(N ′′, t)

+ η2
2{A−P4S1/2,1/2(N=1, t)−A+P4S1/2,1/2(N=0, t)}. (5.33)
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Figure 5.9.: Evolution of the vibrational state population probabilities P4S1/2(N, t). Shown
is the time evolution of the population probabilities P4S1/2(N, t). Color code: N = 0 (black),
N = 1 (red), N = 2 (blue), N = 3 (green), and N = 4 (purple).

The four terms in Eq. (5.33) describe population loss due to absorption of imaging light on the
4S1/2 → 5P3/2 transition, population growth because of stimulated emission from the 5P3/2

level, population growth owing to spontaneous emission from all energetically higher atomic
states, and change in population because of EIT cooling.

In Eq. (5.33) we made the assumption that spontaneous emission is isotropic and thus
included a factor 1/3 to account for the one spatial dimension of our simulation. The maxi-
mum Lamb-Dicke parameter η of all transitions in our simulation has the value η = 0.35. We
therefore consider only transitions with ∆N = {0,±1,±2} in all of our rate equations. Since
fluorescence imaging and EIT cooling act only on the 4S1/2, 4P1/2, and 5P3/2 levels, the rate
equations for all other atomic levels include solely spontaneous emission terms.

5.5.3. Results of the Simulation

The simulation yields the population probabilities for the vibrational states |N〉 of the atomic
states |4S1/2,MJ=−1/2〉 and |4S1/2,MJ=+1/2〉 for times up to t = 4 ms.3 Since the two Zeeman
states are degenerate in the absence of a magnetic field, we give the population probabilities
for their different vibrational states |N〉 as the sum over the two atomic states, i.e.

P4S1/2(N, t) = P4S1/2,1/2(N, t) + P4S1/2,−1/2(N, t). (5.34)

Figure 5.9 presents the numerical results for P4S1/2(N, t) for N ∈ {0, 1, 2, 3, 4}. After around
30 µs the atom is nearly entirely pumped from the vibrational ground state |N=0〉 into excited
vibrational states |N〉 of the 4S1/2 level. For times t > 30 µs the population probabilities of

3The duration of 4 ms is chosen because of limited computational power.

79



5. Simulation of Violet Fluorescence Imaging and Laser Cooling of Trapped 39K Atoms

Γ
vi

ol
et

(t
)/

10
3
(s
−

1
)

Figure 5.10.: Fluorescence rate of violet photons, Γviolet, as a function of time t. The time
starts with the beginning of violet fluorescence quantum gas microscopy.

the excited vibrational states |N = 2〉 and |N = 3〉 increase continuously. We explain this
growth through EIT cooling being not efficient enough to cool the trapped atom during flu-
orescence imaging. At t = 100 µs, the population probabilities P4S1/2(N, t) of the vibrational
states |N=0〉, |1〉, |2〉, |3〉, and |4〉 are 0.004, 0.82, 0.15, 0.02, and 0.002, respectively, with no
considerable population probabilities for higher vibrational states and excited atomic states.
The average vibrational quantum number N of the atom at that point of time is N = 1.2. At t =
4 ms, the average vibrational quantum number has increased to N = 1.39.

In a next step, we use the population probabilitiesPk(N, t) obtained for the Zeeman states
of the 5P3/2 level to calculate the fluorescence rate Γviolet of violet photons as a function of
time. Figure 5.10 depicts the numerical results for Γviolet(t). The function Γviolet(t) flattens
after a time t ≈ 10 µs and is constant for t > 30 µs. The average fluorescence rate within the
first 30 microseconds is Γ̄violet,30 ≈ 25700 photons/s. For times longer than 30 µs, Γviolet(t) has
decreased to around 1100 photons/s.

To determine how the average vibrational quantum number N and Γ̄violet,30 depend on
the lattice depth V0,4S1/2, we numerically calculate both quantities for lattice depths between
600Erec and 1200Erec. Figure 5.11 depicts N at times t = 30 µs, denoted as N30, as well as
Γ̄violet,30 as a function of the lattice depth V0,4S1/2. The numerical results confirm that a stronger
confinement of the 39K atom leads to a smaller average vibrational quantum number N30 and
a larger average fluorescence rate Γ̄violet,30. However, the lattice depth dependency is rather
weak for both quantities.

5.5.4. Discussion and Conclusion

To evaluate whether violet fluorescence imaging and simultaneous EIT cooling on the princi-
pal D1 transition of trapped 39K atoms will allow for the performance of fluorescence quantum
gas microscopy, it is important to know whether the 39K atoms scatter a sufficient number of
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Figure 5.11.: Lattice depth dependency of N30 and Γ̄violet,30. The numerical data shows the
dependence of the average vibrational quantum number N30 (black squares) and the average
fluorescence rate Γ̄violet,30 of violet photons (red circles) on the lattice depth V0,4S1/2.

violet photons during imaging. For exposure times longer than 30 µs, the fluorescence rate of
a single trapped 39K atom (Γviolet ≈ 1100 photons/s) is smaller than the scattering rates mea-
sured in most existing FQGM apparatuses, for which fluorescence rates are typically between
∼ 5000 photons/s (for 40K in Ref. [Che15]) and ∼ 60000 photons/s (for 87Rb in Ref. [She10]).
It is, however, comparable to that of the 40K FQGM apparatus of the Thywissen group. In
this apparatus, the fluorescence rate per atom has been experimentally determined to be∼ 900
photons/s [Edg15]. We therefore conclude that violet fluorescence quantum gas microscopy
and simultaneous EIT cooling of trapped 39K should be in principle possible with regards to
emitting a sufficient number of fluorescence photons.

In order to increase the number of detected violet fluorescence photons, it could be expe-
dient to repeatedly pulse the violet laser. One would then switch off the imaging laser after a
time t = 30 µs when fluorescence emission becomes less efficient. After a certain duration dur-
ing which EIT cooling has acted on the atom one could switch on the imaging laser again and
profit from the enhanced fluorescence rate. Bare EIT cooling leads to a steady-state vibrational
quantum number 〈N〉st given by [Mor00]

〈N〉st =
A+

A− −A+
. (5.35)

In our simulation, 〈N〉st = 0.34. Since 〈N〉st > 0, EIT cooling in our simulation does not transfer
the trapped 39K atom entirely back into the vibrational ground state. This circumstance limits
the fluorescence rate when the violet imaging laser is switched on again.

In a next step, we have to quantify the probability of atom loss during violet fluores-
cence quantum gas microscopy. This requires an extension of the simulation described in this
Chapter. Our simulation is based on a simplified model in 1D, in which the eigenstates of an
inverted harmonic oscillator are assumed to be harmonic oscillator states. As can be seen from
Table 4.2, 18 out of 26 fine structure Zeeman states possess a negative atomic polarizability
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αtot(ωL) and are therefore anti-trapping states. To improve the simulation, the true eigenstates
of an inverted oscillator should be used since that provides a more realistic description of the
dynamics of the trapped atom. It might then be possible to estimate the probability for loss of
the 39K atom from the lattice site during imaging.

In a further step, the simulation could account for the hyperfine structure of the 39K atom.
The refinement of the definitions of the frequency-dependent valence scalar and tensor polar-
izabilities α0(ωL) and α2(ωL) for hyperfine structure Zeeman states is straightforward [Bon97].
Lastly, the simulation can be extended to three spatial dimensions, where vibrational levels are
degenerate.

Experiments on violet fluorescence imaging of K atoms in an optical lattice have been
performed by G. Edge in the Thywissen group with 40K atoms. In these experiments, D1 EIT
cooling was applied simultaneously to fluorescence imaging. In another set of experiments,
EIT cooling was executed sequentially with cooling and imaging alternating with a period of
∼1 ms [Edg17]. When the intensity of the 404.5 nm-imaging laser was below a certain thresh-
old, the obtained fluorescence images suffered from a poor signal to noise ratio. For laser
intensities larger than the threshold, loss of atoms out of the lattice sites was observed. It
was hence concluded that EIT cooling did not cool the trapped atoms quickly enough during
imaging in their experiments. It will be thus interesting to study the experimental feasibility of
combined violet fluorescence imaging and D1 EIT cooling of 39K atoms in future experiments.
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Experiments with ultracold quantum gases are performed under UHV and hence require a
UHV chamber. An important part of this Thesis was the design of the vacuum apparatus of
the K−Cs experiment from scratch. To be able to adapt the K−Cs vacuum setup in future
to new experimental needs, we opted for a modular design of the vacuum apparatus. The
vacuum apparatus comprises two vacuum systems, which are connected to each other: one
vacuum system is used to produce ultracold K and Cs quantum gases (main vacuum system)
and a second vacuum chamber is used to implement our FQGM imaging system (science cham-
ber). This Chapter outlines the overall design of the entire vacuum apparatus and focuses on
the technical design of the main vacuum system. At the end of this Chapter, we discuss mag-
netic field coils, which are employed to generate a magnetic offset field and whose design is
closely related to the main vacuum system. Chapter 8 then deals with the design of the science
chamber. Both vacuum systems in combination will allow us to perform fluorescence quantum
gas microscopy of K and Cs atoms according to the envisioned experimental sequence that has
been detailed in Sec. 3.5.1. The main vacuum system has been implemented and enabled the
experiments reported in Ch. 7.

6.1. General Considerations

In this Section, we list the experimental requirements on our vacuum apparatus and treat the
question of which material is most suited for these purposes.

6.1.1. Experimental Requirements on the K−Cs Apparatus

We divide the experimental requirements on our vacuum apparatus into three categories: vac-
uum quality, experimental capabilities, and physical shape.

◦ Requirements on vacuum quality

− The vacuum apparatus must contain two chambers that allow us to generate di-
rected beams of slow potassium and cesium atoms. Both chambers must be de-
signed to operate at pressures around ∼1× 10−6 mbar

− For production and investigation of ultracold quantum gases, the vacuum system
has to provide a UHV region with a pressure around ∼10−11 mbar

◦ Requirements on experimental capabilities

− The apparatus has to facilitate the implementation of our imaging system discussed
in Sec. 3.5.3

− To polarize KCs molecules, the apparatus must offer in-vacuo electrodes
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◦ Requirements on physical shape and material

− To apply laser cooling, trapping, and probing techniques to the ultracold atoms, the
vacuum system needs to offer optical access to the atoms from several directions

− Because of limited lab space, the design of the apparatus must aim for a high degree
of compactness

− The possibility to install external magnetic field coils around the UHV region must
be given

− To minimize magnetization effects, the vacuum system should be non-magnetic

6.1.2. Material Choices

In today’s vacuum technology, users can choose between numerous materials for vacuum
chambers including stainless steel, aluminum, titanium, and glass. We summarize some ad-
vantages and disadvantages of each material in the following.

Stainless Steel
Stainless steel exists in different grades, which are grouped into four families: ferritic, marten-
sitic, austenitic, and austenitic-ferritic [Inf]. Austenitic stainless steel is well machinable and
very common in UHV technology. It offers a sufficiently high mechanical strength to make
leak-free ConFlat flange joints between vacuum components, which are preserved even at
bakeout temperatures of 400 ◦C. On the other side, stainless steel contains substantial amounts
of hydrogen, which represent a source of continuous outgassing. Hydrogen stored in stainless
steel limits the ultimate achievable pressure of a vacuum system and thus requires a thor-
ough degassing treatment of the vacuum chamber. Austenitic steel would be non-magnetic
if it was defect-free but practically always contains small magnetic (ferrite/martensite) por-
tions [Bri]. The relative magnetic permeability µr of austenitic stainless steel is typically around
µr ≈ 1.05− 1.1 [Bri].

Aluminum
Aluminum has several advantages over stainless steel: its reduced mechanical hardness goes
along with better machining. The higher thermal conductivity supports a uniform bakeout of
the vacuum chamber and facilitates lower bakeout temperatures. Aluminum alloys in vacuum
technology contain orders of magnitude less hydrogen than stainless steel and are less mag-
netic [Atl]. When aluminum is left unprotected against oxygen and water, it instantaneously
builds up a porous oxide layer on its surface. As this oxide layer causes severe outgassing, it
calls for special surface processing techniques. Because aluminum is too soft to compress stan-
dard copper gaskets, leak-tight ConFlat flange joints are problematic with aluminum. For this
reason, flanges require special processing and come, for instance, as CrN coated aluminum
flanges for increased hardness at the expense of a maximum bakeout temperature of 150 ◦C
[Kur].

Titanium
Titanium is strong enough for machining all-titanium ConFlat flanges and can be orders of
magnitude less magnetic than stainless steel [Boy94]. So far, titanium is particularly used
when aiming for extra-high vacuum (∼10−12 mbar). For this reason, there is only a limited
selection of commercially available titanium vacuum components.
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Glass
One of the technically purest forms of glass is fused silica, a fully synthetic material of sili-
con dioxide [Her]. Vacuum chambers out of fused silica offer high optical access, electrical
insulation, and a non-magnetic environment. Since glass becomes fragile in the presence of
tensile stress, a vacuum chamber out of glass always carries the risk of being damaged eas-
ily and does not offer straightforward solutions for fixing internal fittings to it. Glass-metal
transitions enable one to connect vacuum glass cells to stainless steel chambers.

Conclusion
Due to the broad range of commercially available stainless steel vacuum parts, we decided to
use a stainless steel vacuum apparatus for the main vacuum system. We dismiss the option
of titanium for reasons of lack of commercially available parts. We aim to transport the quan-
tum gases from the main vacuum system to the science chamber. Therefore we refrain from
choosing glass as it is rather fragile, especially when multiple connections to other vacuum
components have to be made. A stainless steel apparatus supports riskless mounting of in-
ternal and external parts. To reduce magnetization effects due to the stainless steel bulk, we
select austenitic stainless steel grades with low magnetic permeability.

6.2. The K−Cs Apparatus

The entire vacuum system of the K−Cs apparatus is located on top of an optical table1. Figure
6.1 shows the final design of the vacuum system of the K−Cs apparatus. In order to isolate the
experimental setup from mechanical vibrations coming from nearby mechanical workshops,
the table top has six internally mounted, passive precision dampers and resides on four pneu-
matic, vibration isolating legs2. Several optical bread boards hold the vacuum apparatus at
a height of approximately 330 mm above the table top. To get optical access into the vacuum
system from the top, the optical bread boards are partially stacked on top of each other. The
optical bread boards are commercial as well as home-built. The commercial breadboards3 are
61 mm thick and have a honeycomb core and damped working surfaces out of austenitic stain-
less steel of grades 316/316L. The two square bread boards shown at the left side of Fig. 6.1
are home-built, 20 mm thick aluminum bread boards. Vertical aluminum legs carry the bread
boards and enable the installation of cross-bracings between the legs to reduce mechanical
vibrations.

Typically, many optical and technical components such as mirrors and magnetic coils
are mounted around the vacuum chamber of a quantum gas experiment. Because of blocked
optical access to the atoms, it is therefore often not possible to implement every desired exper-
imental technique to the apparatus. For this reason, the design of the K−Cs apparatus follows
the concept of a bi-sected vacuum system. The vacuum system consists of a main unit that is
permanently installed (main vacuum system) and a vacuum cell that is exchangeable (science
chamber). Main vacuum system and science chamber are connected to each other and can be
operated independently from each other. Figure 6.1 shows the position and the orientation of
the main vacuum system (green color) and the science chamber setup (orange color). We use
the main vacuum system to produce quantum gases and to perform experiments for which

1Newport Spectra-Physics GmbH, M-RS4000-58-12.
2Newport Spectra-Physics GmbH, S-2000A-423.5.
3Newport Spectra-Physics GmbH, Precision Grade Series.
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Figure 6.1.: Overview of the K−Cs apparatus. The K−Cs apparatus is built on a floating
optical table. The vacuum apparatus consists of the main vacuum system (green color) and
the science chamber setup (orange color). It is mounted on optical bread boards, which are
held by aluminum legs.

probing via standard absorption imaging is sufficient. It has been built and led to several pub-
lications so far [Grö16, Grö17c, Grö17b]. The science chamber will be used solely to study
quantum gases and thus will be free from surrounding magneto-optical trap (MOT) optics. It
therefore provides the possibility to implement additional experimental tools to the apparatus.
The science chamber is designed for the specific experimental needs of current research goals
and can be replaced by a modified one whenever new research goals appear. At the time of this
Thesis, the science chamber was mainly designed to provide the structural and experimental
capabilities to implement our high-resolution imaging system (see Sec. 3.5.3) and to perform
fluorescence quantum gas microscopy.

6.3. Main Vacuum System

The main vacuum system of the K−Cs apparatus centers around a stainless steel chamber,
which serves as production site of ultracold potassium and cesium samples. Figure 6.2 gives
an overview of the main vacuum system. The stainless steel chamber is designed to enable
UHV and is denoted as main chamber in the following. The atoms for the ultracold samples
stem from two atom sources that connect on the left side of the main chamber in Fig. 6.2. The
atom sources, one for each atomic species, generate atomic beams of potassium and cesium
and send them towards the main chamber. The angle between the two atom sources is chosen
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Figure 6.2.: Overview of the main vacuum system. The main vacuum system consists of
four sections that are highlighted by different colors in this Figure. Two atomic beam sources
(blue) generate beams (dashed lines) of potassium and cesium atoms and send them towards
the main chamber (yellow) for production of ultracold quantum gases. Differential pumping
sections (green) between the atom beam sources and the main chamber make the physical con-
nections between those vacuum chambers. Simultaneously, the differential pumping sections
prevent pressure equalization between the different vacuum chambers that maintain different
pressures. A vacuum pump section (orange) joins to the back side of the main chamber and
creates an UHV environment within the main chamber. On the right side of the main chamber,
a gate valve enables the connection of the science chamber, which is not shown here.
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Figure 6.3.: Top view of main chamber. The main chamber is equipped with a total of twelve
viewports. Four CF40 viewports (blue color) with anti-reflection coating ’A’ and four CF40
viewports (red color) with anti-reflection coating ’B’ are arranged crosswise in the horizontal
plane. In addition, a CF40 re-entrant viewport (light blue) and a CF16 viewport are mounted to
the vertical faces of the main chamber. Along the vertical axis, two CF200 re-entrant viewports
(light blue) are attached on the top and bottom side of the main chamber. A CF63 flange
connects to the vacuum pumps section and a CF40 straight connector of minimum length
(close coupler) in combination with a CF40 gate valve make the transition towards the science
chamber. The science chamber is not shown in this Figure. A CF40 viewport terminated the
gate valve until the science camber was attached to the main chamber. The horizontal, dashed
line marks the transportation axis along which the atoms are moved from the main chamber
to the science chamber.
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such that their atomic beams intersect in the geometrical center of the main chamber. At the
center of the main chamber, the potassium and cesium atoms are collected in 3D-MOTs and
cooled to Bose-Einstein condensation.

All previously built cesium quantum gas apparatuses in Innsbruck have used Zeeman
slowers for loading 3D-MOTs [Web03a, Ryc04, Gus08, Pil09]. In those apparatuses, the dis-
tance between atom source and UHV chamber is typically on the order of one meter. To make
the K−Cs vacuum setup more compact compared to previous quantum gas apparatuses in
Innsbruck with Zeeman slowers, we employ 2D magneto-optical traps (2D-MOTs) as atomic
beam sources similar to the one described in Ref. [Rid11a]. In this way, we were able to reduce
the distance between the 2D-MOT and the main chamber to about 23 cm.

In Ref. [Rid11a], efficient operation of a potassium 2D-MOT has been reported for a potas-
sium partial pressure between 1× 10−6 mbar and 1× 10−7 mbar. To maintain UHV in the main
chamber while allowing for a higher pressure in the 2D-MOT chambers, the two 2D-MOTs are
connected to the main chamber via tubes (differential pumping sections) with reduced gas flow
conductance. In the back of the main chamber in Fig. 6.2, vacuum pumps are installed to
create and maintain UHV inside the main chamber. This section is denoted as pumping section.
On the right side of the main chamber in Fig. 6.2, a gate valve permits the connection of a
science chamber to the main chamber. We discuss the sections of the main vacuum system
individually in the following.

6.3.1. Main Chamber

The main chamber is at the heart of the K−Cs vacuum apparatus and designed to obtain pres-
sures as low as 1× 10−11 mbar. Due to its central position we opted for a custom design of the
chamber. Figure 6.3 shows a top view of the main chamber, while Fig. 6.4 depicts a vertical
cut of the main chamber. The shape of the main chamber resembles that of a straight prism
with a dodecagonal footprint. The left side of the dodecagon in Fig. 6.3 is substituted by a
protrusion. The main chamber has a width of 269 mm and a height of 95 mm. Our in-house
mechanical workshop first wire-cut and then milled the main chamber body out of a single
piece of austenitic stainless steel (material number 1.4429-ESU). This stainless steel type pos-
sesses a very homogeneous microstructure, which leads to a relative magnetic permeability of
µr ≤ 1.005 [Vacb]. It has the lowest relative magnetic permeability we could find for commer-
cially available stainless steel.

Ten viewports are mounted on the vertical faces of the main chamber. Eight CF40 view-
ports4 and one CF16 viewport5 (colored red and dark blue in Fig. 6.3), are anti-reflection
coated on both sides of the glass substrates. We use two distinct anti-reflection coatings for
these viewports, covering different wavelength bands:

◦ Coating A (minimum reflectivity between 750 nm and 1500 nm):

− reflectivity at 770 nm (potassium laser cooling light) is 0.1 %

− reflectivity at 852 nm (cesium laser cooling light) is 0.3 %

− reflectivity between 1100 nm and 1500 nm (laser light for driving transitions in KCs
molecules) is smaller than 2.3 %

4 Viewports were manufactured by Larson Electronic Glass, California, U.S.A. Optical specifications: Corning
HPFS 7980, homogeneity grade 0, inclusion class A. Transmitted wavefront error < λ/4 at 632 nm, parallelism <
10′′. Flange specifications: Stainless steel AISI 316LN, non-magnetic titanium sleeve for glass-metal transition.

5See footnote 4.
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Figure 6.4.: Vertical cut of main chamber. The upper and lower CF200 re-entrant viewports ex-
tend 27 mm into the main chamber. A horizontal CF40 inverted viewport reaches between the
vertical viewports. For absorption imaging of the atoms the absorption laser beam is guided
through the vacuum pump section towards the atoms. Grooves at the inside wall of the main
chamber are used for mounting in-vacuo electrodes.

◦ Coating B (minimum reflectivity between 400 nm and 532 nm and at 1064 nm):

− reflectivity at 1064 nm (optical dipole traps, optical lattices, and optical transport) is
0.2 %

− reflectivity at 405 nm (violet imaging of potassium) is 0.7 %

− reflectivity at 532 nm (super-lattice) is 0.3 %

The experimentally measured coating charts provided by the company are shown in Ap-
pendix B.1 and Appendix B.2. The tenth viewport is a custom-made, non-magnetic, uncoated
inverted CF40 viewport6. It extends 77 mm into the main chamber as shown in the light blue
color in Fig. 6.3. The inverted CF40 viewport is used for absorption imaging. The absorption
laser beam passes through the vacuum pump section and then travels through the inverted
CF40 viewport towards a camera. To form an image of the atoms, a lens can be placed within
the inverted CF40 viewport. Because of the inverted form of the viewport, the lens can be
brought close to the atoms. Having a clear aperture of 24 mm, as detailed in Fig. 6.4, the in-
verted viewport allows for a numerical aperture of up to NA = 0.19 for absorption imaging.
The technical drawing of the inverted CF40 viewport is given in Appendix C.1.

6 Manufactured by UKAEA, Oxfordshire, United Kingdom. Optical specifications: Quartz material is Spectrosil
2000 by Heraeus, transmitted wavefront error < λ/4, thickness of 4 mm, parallelism ≤ 3′, index of refraction
homogeneity ≤ 10 ppm.
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Figure 6.5.: Main chamber electrodes. Top view of the main chamber during assembly. The
rod electrodes run parallel to the transportation axis and can be seen in the middle of the
Figure. The electrodes are held by Macor® holders and groove grabbers. On the left side, one
can see the cabling being fed from electrical feedthroughs to the electrodes.

On the left side of the main chamber in Fig. 6.3, a cornered lump protrudes and contains
three CF16 flange connections. The center CF16 flange connection is occupied by the above-
mentioned CF16 viewport. The CF16 viewport lies on the axis that goes through the center of
the main chamber and the center of the science chamber. The viewport is thus used for insert-
ing the optical transportation laser beam into the vacuum system. The two outer CF16 flange
connections make the joints between the differential pumping sections and the main chamber.
To take into acocunt the gravitational sag of the slow atom beams during their journey from
the 2D-MOT chambers into the main chamber, the two flange connections are positioned 2 mm
above the vertical midplane of the main chamber. On the right side of the main chamber in Fig.
6.3, a manual CF40 gate valve7,8 terminates the main chamber and allows for the installation
of the science chamber. At the back of the main chamber, a CF63 flange with a 132 mm long
tube (inner diameter of 61 mm) connects the main chamber to the pumping section.

On the top and bottom side of the main chamber, two identical uncoated CF200 re-entrant

7Lesker, CF40 manual gate valve, SG0150MCCF.
8The manual CF40 gate valve mounted to the main chamber relies on a fluorocarbon o-ring seal and has been

chosen over an all-metal valve because of cost reasons. For future experiments, the usage of an all-metal angle
valve is recommended.
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Figure 6.6.: Overview of the potassium 2D-MOT chamber setup. The glass cell of the potas-
sium 2D-MOT chamber is oriented horizontally and mounted to the front facet of the 2D-
MOT stainless steel chamber. The latter incorporates several components to maintain vacuum
within the 2D-MOT chamber and to operate the potassium 2D-MOT. These components in-
clude an ion pump, a CF40 angle valve, a mechanical shutter, a CF16 angle valve, a CF16 el-
bow, and an oven. The 2D-MOT vacuum chamber attaches to the differential pumping section
at the rear side of the stainless steel chamber.
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viewports9,10 are installed (see Fig. 6.4). The CF200 viewports have an inwards recession of
27 mm, a clear view of 153 mm, and are made out of AISI 316LN/316L austenitic stainless steel.
The technical drawing of the CF200 viewports is given in Appendix C.2.

Inside the main chamber, four straight rod electrodes in rectangular configuration are
capable of generating electric fields with field strengths of up to 20 kV/cm [Grö16]. The elec-
trodes are held in place by home-built groove grabbers, which are clamped to grooves running
along the inner wall of the main chamber. Figure 6.5 shows the rod electrodes within the main
chamber. The grooves to which the groove grabbers are mounted are pointed out in Fig. 6.4.
The rod electrodes are isolated against the groove grabbers and the main chamber by home-
built Macor® isolators. Kapton-insulated copper wires connect the rod electrodes to electrical
feedthroughs at the pumping section (see Sec. 6.3.5).

To generate magnetic fields with field strengths of more than 1000 G (with 1 G = 10−4 T),
the K−Cs apparatus includes several magnetic coils. The design of the magnetic coils and their
function within the experimental sequence is described in Ref. [Grö17a]. The magnetic coils
are externally mounted to the main chamber. To reduce the spatial separation of the coils and
thus the electric current needed to generate the mentioned field strengths, the coils are sunk
within the inverted CF200 viewports.

6.3.2. 2D-MOT Vacuum Chambers

The 2D-MOT vacuum chambers for potassium and cesium are copies of each other and nearly
identical. We therefore concentrate on the description of the potassium 2D-MOT vacuum
chamber in the following and refer to the cesium 2D-MOT chamber where necessary.

Figure 6.6 shows an overview of the potassium 2D-MOT chamber setup. The central
parts of the potassium 2D-MOT vacuum setup are a glass cell and a home-built stainless steel
chamber. The back facet of the 2D-MOT stainless steel chamber connects to the differential
pumping section via a CF50 flange. The opposing front facet accepts the 2D-MOT glass cell.
While the 2D-MOT glass cell offers optical access for laser beams to create a 2D-MOT in it, the
stainless steel chamber acts as a socket for the 2D-MOT glass cell. The 2D-MOT stainless steel
chamber was milled out of a monolithic block of stainless steel grade AISI 30411. It has outer
dimensions of 118× 118× 120 mm.

To operate the 2D-MOT vacuum chamber setup, the stainless steel chamber provides sev-
eral CF flanges for installing vacuum components as depicted in Fig. 6.6. On top of the stain-
less steel chamber, a CF40 tee includes a CF40 angle valve12 for initial pumping with a turbo
pump and an ion pump13 for vacuum maintenance. A CF40 mechanical shutter, which is
mounted horizontally to the stainless steel chamber in Fig. 6.6, can be used to control the par-
ticle flux from the 2D-MOT chamber to the main chamber. On the bottom side of the stainless
steel chamber, a CF16 angle valve14 connects to a CF16 elbow and a stainless steel tube that are
mounted in series. The tube is 95 mm long, 10 mm wide, and has a wall thickness of 0.5 mm.

9Manufactured by UKAEA, Oxfordshire, United Kingdom. Optical specifications: Quartz material is Spectrosil
2000 by Heraeus, transmitted wavefront error < λ/4, thickness of 10 mm, parallelism ≤ 3′, index of refraction
homogeneity ≤ 10 ppm.

10The inverted CF200 viewports were left uncoated in order not to be affected in future experiments by wavelength
limitations resulting from the anti-reflection coating and for cost reasons.

11Magnetic permeability µr ≤ 1.3 [Vaca].
12VAT, Easy-close all-metal angle valve, CF40, Series 541.
13Agilent Technologies, VacIon Plus 20, StarCell.
14VAT, Easy-close all-metal angle valve, CF16, Series 541.
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Figure 6.7.: Vertical cut of 2D-MOT chamber. The inside of the 2D-MOT chamber houses
several parts: the stainless steel mirror and a subsequent stainless steel rod (both belong to the
differential pumping section (green color)) are secured against slipping out of position by a
clamp and a recession within the CF50 flange. The stainless steel mirror facilitates to overlap
counterpropagating laser beams (red arrows) in longitudinal direction. A mechanical shutter
intersects the differential pumping section and blocks the atomic beam from the 2D-MOT if in
closed position and otherwise clears the passage. The sealing mechanism between the glass
cell and the stainless steel chamber is illustrated in the inset: the glass cell flange sits on a
circumferential indium wire layed out on the sealing surface of the stainless steel chamber.
An aluminum ring encloses the glass cell flange. As the screws of the aluminum ring are
tightened, the glass cell is pressed against the stainless steel chamber and the indium wire is
compressed. A rubber ring reduces potential stress in the glass cell flange.
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The stainless steel tube contains two commercial, vacuum sealed pyrex ampoules15 filled
with potassium. Each ampoule contains approximately 15 mg of potassium, which is enriched
to 9 % of the isotope 40K. We piled two ampoules on top of each other. By compressing the
stainless steel tube with pliers one breaks the ampoules. After having broken the first ampoule,
the solid potassium sample within the ampoule starts to sublimate and thus feeds the 2D-
MOT chamber with vapour of atomic potassium. To increase the partial pressure of potassium
within the 2D-MOT chamber, the stainless steel tube is heated by externally mounted heating
wires and thereby acts as potassium oven. The potassium vapour is guided into the 2D-MOT
glass cell through the CF16 elbow, the CF16 angle valve, and two perpendicular drillings in
the stainless steel chamber. The two drillings are pointed out in Fig. 6.7 by an arrow.

Similarly, for the cesium 2D-MOT chamber, we use two vacuum sealed ampoules of ce-
sium16. Here, each glass ampoule contains 1 g of cesium with a purity of 99.98 %. The stainless
steel tube for the cesium ampoules is 134 mm long and 14 mm wide.

Figure 6.7 shows a vertical cut of the 2D-MOT chamber and gives an overview of the
components that are mounted within the chamber. A custom-made stainless steel cylinder17

with a diameter of 20 mm and a length of 40 mm extends into the 2D-MOT glass cell. The cylin-
der is cut under an angle of 45° relative to its symmetry axis. To obtain a polished and thus
reflecting cut surface, the cut surface is diamond-machined. The reflecting surface can be used
to reflect and overlap laser beams that propagate parallel or antiparallel to the atomic beam
generated by the 2D-MOT. In this way it is possible to add an unbalanced optical molasses in
the longitudinal direction of the 2D-MOT and thereby create a so-called 2D+−MOT [Die98].
Figure 6.7 depicts the two longitudinal optical molasses beams within the glass cell. A drilling
along the axis of the stainless steel cylinder (stainless steel mirror) with 1.5 mm diameter al-
lows the atomic beam from the 2D-MOT to enter the differential pumping section towards the
main chamber. Atoms that move fast in longitudinal direction spend little time within the 2D-
MOT and are therefore not cooled sufficiently in the transverse directions [Die98]. These atoms
collide with the stainless steel mirror and are rejected from entering the differential pumping
section. The drilling aperture of the stainless steel mirror thus acts as a filter for the trans-
verse and longitudinal velocity of the atoms in the atomic beam [Die98, Rid11a]. The usage
of stainless steel as material for the mirror within the 2D-MOT glass cell excludes the risk of
potential chemical reactions with potassium and cesium. A diamond-polished stainless steel
mirror, however, comes at the expense of comparatively high costs.18 A technical drawing of
the stainless steel mirror is shown in Appendix C.3.

The 2D-MOT glass cell19 is custom-made. It consists of a glass cell body that merges into a
round glass disk. Figure 6.8 shows a schematical drawing of the 2D-MOT glass cell. The glass
cell body has a 55× 55 mm quadratic cross-section. It is built up of five rectangular 4 mm-thick
fused silica substrates that are optically contacted to each other. The overall length of the glass
cell is 139 mm. This length is long enough to substantially vary the width of the transverse 2D-
MOT laser beams for optimization of the atomic beam flux. The glass substrates are polished

15Precision Glassblowing of Colorado, U.S.A. The ampoule size is approximately 7 mm (outer diameter) x 25 mm
(length).

16Alfa Aesar GmbH, Karlsruhe, Germany.
17Made out of stainless steel 1.4432 by Kugler GmbH, Salem, Germany.
18An alternative solution for the 2D-MOT mirror has been realized within the dysprosium-potassium experiment

of the Grimm group in Innsbruck. In this experiment, a commercial, silicon dioxide protected mirror with a
hole has been used and so far no complications have been reported.

19Manufactured by Hellma GmbH, Müllheim, Germany.
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Figure 6.8.: 2D-MOT glass cell. The 2D-MOT glass cells consist of a cuboid glass cell body
that merges into a round glass disk. The glass disk acts as a glass flange.

to have a transmitted wavefront error20 of equal to or smaller than λ/4. To avoid potential
complications resulting from chemical reactions of the atomic vapour and an in-vacuo coating,
we opted for uncoated glass substrates. The glass disk of the glass cell has an outer diameter
of 100 mm, is 10 mm thick, and acts as a glass flange.

We mount the glass cell to the 2D-MOT stainless steel chamber by pressing the glass
flange of the glass cell against the front facet of the stainless steel chamber. In contrast to other
groups, which glue their 2D-MOT windows to a titanium 2D-MOT chamber [Cat06] or have a
glass cell with welded glass-metal transition [Rid11b], we use an indium wire to achieve a vac-
uum compatible glass-metal transition. Indium sealings have several advantages over other
sealings e.g. a comparatively small force needed for compression, being less susceptible to me-
chanical shock, and being more compact [ESP]. Indium as glass-metal transition has also been
used in another ultracold atom experiment [Ueh08]. An indium wire21 layed out in a circle
with its two ends overlapping creates a reliable glass-metal transition22 when compressed. To
press the glass flange gently against the stainless steel chamber, an aluminum ring encloses the
glass flange. By tightening ten M4 screws, the indium wire is compressed and the glass cell is
fixed. To avoid stress-induced cracking of the glass flange, a rubber ring is placed in a groove
between the aluminum ring and the glass flange. The inset of Fig. 6.7 depicts the mounting
mechanism of the 2D-MOT glass cell. A technical drawing of the 2D-MOT glass cell is given
in Appendix C.4. During the assembly of the 2D-MOT chamber leaks at the glass-metal tran-
sition occurred. It turned out that the surface roughness of the glass flange sealing surface was
too large and thus undermined the sealing. To achieve a proper sealing, the sealing surface
of the glass flange was manually re-polished with polyurethane foil and cerium oxide based

20Wavefront deformation measured over a circular area of 20 mm diameter.
21ESPI Metals, Oregon, U.S.A, 1.52 mm diameter and purity of 99.999 %.
22Indium is widely known for creating reliable and leak-proofed seals between glass and metal. Unlike other

sealants that just form a barrier, indium also seals by forming a chemical bond between itself and the surfaces
to be connected [ESP].
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Figure 6.9.: Differential pumping section. The upper part of the Figure shows the inner profile
of the DPSs. Each of the two DPSs is made up of five components, which are shown in the
middle of this Figure: a stainless steel mirror (brown), a stainless steel rod (blue), a CF50-to-
CF16 straight connector (orange), a CF16 gate valve (green), and a CF16 bellow (purple). The
lower part of the Figure depicts the connection of the stainless steel mirror to the stainless steel
rod. The stainless steel rod is clamped to the stainless steel chamber on the left side and is held
by a recession in the CF50 flange on the right side.
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Figure 6.10.: Mechanical shutter. The mechanical shutter disrupts the atom flux between the
2D-MOT chamber and the main chamber. The shutter uses a tilting mechanism that relies on
a flexible bellow and a ball joint. If the tilt bracket is moved upwards (vertical black arrow)
this movement translates into a downmove of the shutter plate, which is welded to a rod.
The shutter plate then frees the path towards the main chamber. In the opposite case of an
downward move of the tilt bracket, the atom flux is blocked. A bent plate helps to cover the
differential pumping section.

glass polishing slurry provided by Hellma.

6.3.3. Differential Pumping Sections

Two differential pumping sections (DPSs) connect the potassium and cesium 2D-MOT cham-
bers to the main chamber. The DPSs run partially inside and partially outside the 2D-MOT
chambers. Figure 6.9 depicts the inner and outer part of a DPS. The DPSs have a tubular shape
through which the atomic beams from the 2D-MOTs can travel into the main chamber. In or-
der to prevent pressure equalization between the 2D-MOT chambers and the main chamber,
the DPSs are designed to maintain a pressure ratio of ∼ 105 [Jou13]. The top of Fig. 6.9 shows
the design of the DPSs, which is identical for the K and Cs DPSs. The total length of each DPS
is 493 mm and the inner diameter increases stepwise from 1.5 mm to 16 mm towards the main
chamber. In a previous experiment, the divergence of a potassium atomic beam emitted from
a potassium 2D-MOT was measured to be (34± 6) mrad [Cat06]. We therefore designed our
DPSs to allow the potassium and cesium atomic beams for a comparable divergence of around
32 mrad (1.86°).

We realize each DPS by joining five tubular vacuum parts in a row. The bottom of Fig.
6.9 shows the five vacuum parts in different colors. The first part is the stainless steel mirror
(brown) within the 2D-MOT chamber. The mirror is attached to a stainless steel rod (blue) that
has a drilling along its cylinder axis. The third part of the DPSs is a CF50-to-CF16 straight
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Figure 6.11.: Atomic motion within the 2D-MOT chamber. The atomic vapour (white and
red circles) released from the broken glass ampoules within the oven feeds the 2D-MOT in the
glass cell. Atoms that have been cooled by the 2D-MOT access the DPS and move towards the
main chamber. The dashed lines indicate the divergence of the atomic beam. To control the
atom flux, the mechanical shutter protrudes into the horizontal pocket of the stainless steel rod
(shown in the inset in half-open half-closed position) producing an upper and a lower gap.

reducer (orange), followed by a pneumatic CF16 gate valve23,24 (green), and a custom-made
CF16 bellow25 (purple). The connection of the stainless steel mirror to the stainless steel rod
relies solely on friction. The stainless steel rod is mechanically clamped to the chamber on the
left end in Fig. 6.9 and rests inside a recession of the CF50 flange on the right end. The rod has
a transversal pocket that allows the mechanical shutter to block the atomic beam. The technical
drawings of the stainless steel rod and the CF50-to-CF16 reducer are given in Appendix C.5
and Appendix C.6.

6.3.4. Mechanical Shutter

Figure 6.10 depicts a mechanical shutter of the 2D-MOT chambers. The shutter consists of
a rod that extents into the stainless steel chamber. The rod is welded to the end cap of a
flexible bellow on one side and carries a plate with a hole on the other side. By moving a tilt
bracket of a ball joint with an external servo motor, the shutter can be moved up and down, i.e.

23Lesker, CF16 pneumatic gate valve, SG0063PCCF.
24The pneumatic CF16 gate valves rely on fluorocarbon o-ring seals and have been chosen over all-metal valves

because of cost reasons. For future experiments, the exclusive usage of all-metal angle valves is recommended.
25Manufactured by Vacom Vakuum Komponenten & Messtechnik GmbH.
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can be toggled between an open and a closed position. If the shutter is in open position, the
atom beam from the 2D-MOT can leave the 2D-MOT chamber through the circular hole of the
shutter plate towards the main chamber. If the shutter is in closed position, the shutter plate
blocks the atomic beam towards the main chamber.26

Figure 6.11 shows a section view of the potassium 2D-MOT chamber and points out the
working principle of the mechanical shutter. Since the atomic beam axis of the 2D-MOT is
aligned with the hole of the stainless steel mirror and thus centered to the DPS, atoms can
travel through the DPS. The shutter reaches into the pocket of the stainless steel rod and either
blocks the atomic beam or clears the passage. To hinder background gas from entering the
DPS through the gaps above and below the shutter plate shown in Fig. 6.11, the bent metal
plate of the mechanical shutter (see Fig. 6.10) covers these gaps.

6.3.5. Vacuum Pumps Section

The vacuum pumps section serves to maintain the ultra-low pressure in the main chamber
and thus incorporates different vacuum pumps. Figure 6.12 gives an overview of the pumping
section. The vacuum pumps are centered around a standard CF100 cube27 that joins to the back
of the main chamber via a CF100-to-CF63 conical reducer. To pump non-getterable gases, we
connect an ion pump28 with 75 L/s pumping speed to the cube and use a titanium sublimation
(TiSub) cartridge29 to pump active gases such as hydrogen. The cartridge reaches into a CF100
straight connector30. When the cartridge is fired, the inner surface (∼ 1500 cm2) of the straight
connector and a subsequent CF100 elbow31 is covered with titanium. Assuming a hydrogen
pumping speed of 3.1 L/s per square centimeter for titanium [Agi], the titanium-coated surface
has a pumping speed of ∼ 4650 L/s. The effective pumping speed at the main chamber is
limited by the intermediate tubing. On the left and right side of the CF100 cube in Fig. 6.12
two electrical feedthroughs32 with in total four connectors enable the application of voltages
up to 20 kV to the rod electrodes inside the main chamber. A CF40 cross33 provides a CF40
angle valve34 for initial pumping of the main chamber, a pressure ion gauge35 as well as a CF40
viewport36 with anti-reflection coating of type ’A’ (see Sec. 6.3.1) for the absorption imaging
laser beam.

6.4. Compensation Coils

We use magnetic coils to cancel dc magnetic stray fields at the position of the atoms within
the main chamber. Static magnetic stray fields result from the earth magnetic field as well as

26The mechanical shutter is similar to the shutter of the erbium experiment of the Ferlaino group in Innsbruck. It
was designed in cooperation with our mechanical workshop and manufactured by the latter.

27Home-built by our mechanical workshop.
28Agilent Technologies, VacIon Plus 75, StarCell.
29Agilent Technologies, Titanium sublimation pump filament cartridge.
30Vacom, CF100 straight connector, SC100R-304.
31Vacom, CF100 elbow, EL100R-316LNS.
32Lesker, SHV-20 electrical feedthrough, IFTXE021153.
33Vacom, CF40 cross, X40R-304.
34VAT, Easy-close all-metal angle valve, CF40, Series 541.
35Agilent Technologies, UHV-24p ion gauge with two tungsten filaments.
36Viewport was manufactured by Larson Electronic Glass, California, U.S.A. Optical specifications: Corning HPFS

7980, homogeneity grade 0, inclusion class A. Transmitted wavefront error < λ/4 at 632 nm, parallelism < 10′′.
Flange specifications: Stainless steel AISI 316LN, non-magnetic titanium sleeve for glass-metal transition.
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ion pump

CF100-CF63 reducer

ion gauge

CF100 cube

CF40 cross

CF40
viewport

CF40
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TiSub cartridge
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electrical
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Figure 6.12.: Vacuum pumps section. A CF100 cube (light blue) forms the center of the vac-
uum pumps section and connects to an ion pump (black), two electrical feedthroughs (green),
and a CF100 elbow with a CF100 straight connector (yellow). The straight connector houses
a titanium sublimation filaments cartridge (red). Furthermore, a CF40 cross (dark blue) incor-
porates a pressure ion gauge (purple), a CF40 angle valve, and an anti-reflection coated CF40
viewport. The pumping section is attached to the main chamber via a CF100-to-CF63 conical
reducer (orange).
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Figure 6.13.: Schematics of the compensation coils around the main chamber. The
z−compensation coil is shown in blue color, while the x− and y−compensation coils are
marked in red and green color, respectively. The ribbon cables of the x− and y−compensation
coils are guided and held by a scaffold of stainless steel rods and aluminum mounts that are
not shown here. The layering of the coil loops is altered in the Figure for illustrative reasons.
The middle loops of the x−coil are partially deformed on the front and back side of the main
chamber to go around the optical breadboards.

from nearby laboratory components such as the permanent magnets of the ion pumps. We
employ in total three different magnetic coils (compensation coils), one for each spatial direc-
tion. The three coils can be addressed individually. Since the compensation coils are centered
around the main chamber and mechanically screwed to it, we consider them as part of the
main vacuum chamber. In this Section we describe the design of the compensation coils, their
implementation to the main chamber, and calculate the magnetic field generated by the coils.

6.4.1. Compensation Coil for the z−direction (Helmholtz-Like Coil)

We realize the compensation coil for the z−axis by winding flat ribbon cables37 around the
flanges of the lower and upper CF200 viewports of the main chamber. Figure 6.13 illustrates
the implementation of the z−compensation coil to the main chamber. For each viewport, we
take a separate flat ribbon cable and wind it twice around. We connect the individual poles
of the flat ribbon cable of each viewport into series, i.e. we connect the end of pole i (with
i = 1, 2, . . . 13) to the beginning of pole i+ 1 of the same cable. The wire connections are done
via D-sub connectors. By means of this serial wiring, we obtain two solenoids, one at each
viewport. We use the unconnected beginning of pole 1 of each solenoid as current input and

37 Ribbon cable with 14 poles and wire gauge 26AWG.
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the unconnected end of pole 14 as current ouput. Each solenoid now effectively consists of a
single wire that is wound around the flange and has 28 windings. The flanges of the CF200
viewports have an outer radius of 127 mm and are 95 mm apart from each other (see Fig. 6.4).
Taking into account the 17 mm-width of the ribbon cable, the centers of the two solenoids
are separated by 112 mm from each other along the vertical axis. The solenoid separation is
nearly as large as the solenoid radii and thus the z−compensation coil is close to the Helmholtz
configuration.

To determine the strength of the magnetic field ~B(~r) that is generated by the Helmholtz-
like coil at the position of the atoms, we perform a finite-element simulation of the magnetic
field. Since the position of the atoms within the main chamber coincides with the geomet-
rical center of the main chamber, we define the center of the main chamber to be the origin
of a local coordinate system. The x−, y−, and z− directions of the local coordinate system
are defined in Fig. 6.13. We use COMSOL Multiphysics 5.3a as simulation software. In the
simulation we assume an input current for the z−compensation coil of 1 A. Figure 6.14 shows
the calculated magnetic field strength B(x, y, z) = | ~B(~r)| along the x−, y−, and z− direc-
tions. At the center of the main chamber, the magnetic field strength is BHHL,sim

0 = 2.08(5) G,
where the number in brackets denotes the estimated uncertainty of the simulated magnetic
field strength. The uncertainty results from the finite computational domain and the internal
convergence criterion of the simulation. It is estimated to be 2 % of the magnetic field strength.
To quantify the field homogeneity around the origin, we fit harmonic functions of the form
BHHL(x) = BHHL

0 +BHHL
2 x2 to the numerical data. Since the z−compensation coil is cylindri-

cally symmetric, it is sufficient to specify BHHL
2 for the x− and z− direction. For each of these

two directions, the fit range is chosen to be −3 mm< x, z <3 mm, yielding some tens of data
points for the fit. We obtain BHHL,x

2 = 3.2(2) × 10−5 G/mm2 and BHHL,z
2 = −2.66(6) × 10−5

G/mm2. Here, the numbers in brackets are the fit errors.

6.4.2. Compensation Coils for the x− and y−directions (Birdcage Coils)

We use two magnetic coils to cancel horizontal magnetic field components around the center
of the main chamber. To understand the design of the x− and y−compensation coils, we first
explain the underlying concept of their design.

Birdcage Coil
We consider a circular cylinder with radius R and length L. For the moment we choose the
length of the cylinder to be infinite. On the surface of that infinitely long cylinder, an electrical
surface current IS flows along the axial direction ~ez of the cylinder. We assume that the asso-
ciated surface current density ~j depends on the cylindrical coordinate azimuth angle θ. Figure
6.15 (a) illustrates the situation and defines the angle θ. If the surface current density ~j(θ) is
given by [Jac99b]

~j(θ) =
IS

2R
cos(θ)~ez, (6.1)

the surface current IS generates a perfectly uniform, transverse magnetic field ~B inside the
cylinder [Jac99b, Nou13]. The magnetic field ~B within the cylinder is antiparallel to the x−di-
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(a)

(b)

Figure 6.14.: Magnetic field strength of the z−compensation coil. (a) Calculated magnetic
field strength B along the x− (green), y− (black), and z−axis (orange). (b) Zoom into plot (a).
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(a) (b)
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Figure 6.15.: Cosine-theta coil. (a) Ideal cosine-theta coil with radius R, infinite length, and
continuous surface current density ~j(θ). (b) Schematic diagram of a discretized cosine-theta
coil with 4Nwires = 16 wires placed on the cylinder surface.

rection, i.e. ~B = −B0~ex, and has a field strength B0 given by [Jac99b]

B0 =
µ0IS

4R
, (6.2)

where µ0 is the magnetic constant. A cylinder with a surface current density~j(θ) like that given
in Eq. (6.1) is known as ideal cosine-theta coil. Owing to the (non-realistic) continuous surface
current density distribution~j(θ) and the infinite length, realization of an ideal cosine-theta coil
is not possible. In order to construct a cosine-theta coil, approximations have to be made to
the ideal coil design. Common approximations involve discretization of the surface current
density~j(θ) and replacement of the infinitely long coil by a coil of finite length [Nou13, Bid05,
Bol88].

The discretization of the surface current density ~j(θ) is achieved in practice with con-
ducting wires. The wires are oriented parallel to the cylinder axis and enclose the cylindrical
volume. Figure 6.15 (b) illustrates the discretization of ~j(θ). The discretized cosine-theta coil
contains Nwires ∈ N+ wires per quadrant. Figure 6.16 shows a cross-section of a discretized
cosine-theta coil with Nwires = 4. To imitate the original cos(θ) surface current density, the
wires are positioned such that their projections onto the x−axis are equidistant [Nou13, Bid05,
Bol88]. The wires i ∈ {1, 2, 3, 4} of the first quadrant must then be placed at angles θi defined
by the relation [Bid05]

θi = − arcsin

(
1− 2i− 1

2Nwires

)
. (6.3)

The angular positions θ of all 4Nwires wires are then given by θ = ±θi and θ = 180° ± θi and
their projections onto the x−axis are equidistant.

If the wires of a discretized, finite-sized cosine-theta coil are joined pairwise on both ends
of the coil (see Fig. 6.16), the wires form closed, rectangular loops. The discretized cosine-
theta coil then takes the form of a birdcage and is thus known as birdcage coil. To improve the
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Figure 6.16.: Discretized cosine-theta coil. The wires of a discretized cosine-theta coil are
nonuniformly placed on the cylinder surface at angles θ. Their projections onto the x−axis
yield equidistant spacings along the diameter. The current in the wires of the upper half of the
cylinder (solid circles) flows in +z-direction and in the opposite direction in the wires of the
lower half of the cylinder (empty circles). If the upper wires are joined (dashed lines) pairwise
with the lower wires on both ends of the cosine-theta coil, the wires form rectangular, closed
loops.

approximation of the cos θ current density, the currents Ii of the different loops are weighted
according to Ii = Imax| cos(θi)|, where Imax is chosen in view of the desired magnetic field
strength B0 on the coil axis [Hay85]. The homogeneity of the magnetic field within the cylin-
drical volume of a discretized, finite-sized cosine-theta coil varies with the total number 4Nwires
of wires and with the ratio L/R. For larger Nwires and L/R, the magnetic field becomes more
homogeneous.

The Birdcage Coils of the Main Chamber
We use two birdcage coils to cancel horizontal magnetic field components within a region of
few millimeters around the center of the main chamber. The coils are mounted concentrically
around the main chamber and their common coil axis coincides with the vertical z−axis. The
current-carrying wires of the birdcage coils therefore run vertically. The two birdcage coils
are rotated relative to each other by 90° such that one coil produces a transverse magnetic
field parallel to the x−axis (x−compensation coil) and the second coil generates a transverse
magnetic field along the y−axis (y−compensation coil). Figure 6.13 shows the implementation
of the two birdcage coils to the K−Cs apparatus.

For both birdcage coils, we opted forNwires = 2. With this choice, the angles θ of the verti-
cal wires can be calculated with Eq. (6.3) to be±49°,±131° (outer loops) and±15°,±165° (middle
loops) with respect to the y−axis for the x−compensation coil and with respect to the x−axis for
the y−compensation coil. In order to make the outer loops of the x− and y−compensation coils
coincide and thus to simplify the setup of the birdcage coils, we approximated their calculated
angular positions. The true angular positions of the outer loops within the K−Cs apparatus
are therefore ≈ ±45° and ≈ ±135°. The vertical wires of the birdcage coils fall between the
horizontal CF40 viewports of the main chamber and thus do not block the horizontal opti-

106



6.4. Compensation Coils

cal access to the atoms. Each birdcage coil has a radius R ≈ 16 cm, a length L ≈ 30 cm, and
stretches below the optical breadboards that support the main chamber (see Fig. 6.13). Since
the coil radii R are larger than the separation of the two optical breadboards, the vertical wires
of the x−compensation coil must go around the optical breadboards. Thus, the middle loops
of the x−compensation coil are partially deformed. The vertical wires of each birdcage coil
are pairwise connected to form loops. To keep the vertical optical access to the atoms free, the
connecting wires at the upper and lower end of the birdcage coils are bent.

We realize both birdcage coils similar to the Helmholtz-like coil described in Sec. 6.4.1. We
wind the loops of each birdcage coil separately using a flat ribbon cable38 with two windings
per loop. To weight the current density of each loop with a cos(θ)-factor, we prepare the flat
ribbon cables of the middle loops to have 13 poles and the cables of the outer loops to have
10 poles. We use D-sub connectors to connect the poles of each ribbon cable in series and
thereby form solenoids with 26 and 20 windings. The four loops of each birdcage coil are
finally connected in series.

In order to obtain information on the magnetic field ~B(x, y, z) that is generated by the
x− and y−compensation coils around the position of the atoms, we perform a computational
simulation. For a coil current of 1 A, the x− and y−compensation coils each generate a mag-
netic field in x− and y−direction, respectively, with field strength BBC,sim

0 = 2.00(4) G. The
number in brackets is the estimated error of the simulation. The simulated magnetic field of
the x−compensation coil varies in strength less than 2 mG across a distance of ±5 mm in x−,
y−, and z−direction. We obtain the same value for the magnetic field homogeneity for the
y−compensation coil.

Due to mechanical restrictions during the winding process, the birdcage coils could not
be wound precisely in the originally intended manner. This resulted in the situation that the
lower ends of the birdcage coils are not symmetric to the upper coil ends. Because of limited
mechanical access, a measurement of the real form of the lower coil ends is not possible. We
estimate that the ribbon cables at the lower coil ends are in some places off by ≈1 cm. This
deviation is small compared to the distance between the lower ends of the birdcage coils and
the center of the main chamber, which is about 21 cm. Therefore, geometrical details of the coil
ends start to become insignificant for the magnetic field at the position of the atoms. Figure
6.13 shows the intended (symmetric) models of our birdcage coils, which were used for the
magnetic field simulations. We expect that the results of the magnetic field simulations are
reasonable approximations of the actual magnetic field at the position of the atoms.

38See footnote 37.
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7. Experimental Results
In the course of this Thesis, a new quantum gas apparatus was built and the work described
in this Thesis thereby contributed to the following three peer-reviewed publications:

1. M. Gröbner, P. Weinmann, F. Meinert, K. Lauber, E. Kirilov, and H.-C. Nägerl
A new quantum gas apparatus for ultracold mixtures of K and Cs and KCs ground-state molecules
J. Mod. Opt. 63 1829-39 (2016) [Grö16]

2. M. Gröbner, P. Weinmann, E. Kirilov, H.-C. Nägerl, P. S. Julienne, C. Ruth Le Sueur, and
J. M. Hutson
Observation of interspecies Feshbach resonances in an ultracold 39K−133Cs mixture and refine-
ment of interaction potentials
Phys. Rev. A 95, 022715 (2017) [Grö17c]

3. M. Gröbner, P. Weinmann, E. Kirilov, and H.-C. Nägerl
Degenerate Raman sideband cooling of 39K
Phys. Rev. A 95, 033412 (2017) [Grö17b]

The first publication demonstrates the production of 39K and 133Cs BECs within the new K−Cs
apparatus. As part of this demonstration, a detailed description of the cooling and evaporation
strategies for obtaining degenerate samples of 39K and 133Cs atoms is given. The second pub-
lication reports on the observation of interspecies Feshbach resonances in an ultracold mixture
of 39K and 133Cs atoms. The experimental data is used to refine K−Cs interaction potentials
and to make predictions of scattering and bound-state properties for 39K−Cs, 40K−Cs, and
41K−Cs mixtures. The third publication gives a demonstration of 3D degenerate Raman side-
band cooling of 39K atoms on the principal D1 atomic transition. With this cooling technique,
it was possible to improve the starting conditions for subsequent evaporative cooling of 39K
atoms within the K−Cs apparatus. All experiments for the three publications were performed
within the main chamber of the K−Cs apparatus. A more extensive discussion of the experi-
mental results can be found in Ref. [Grö17a]. The main results of the above-mentioned three
publications are summarized in the following Sections.

7.1. Bose-Einstein Condensates of 39K and 133Cs Atoms

In the first publication [Grö16] of the new K−Cs apparatus, the production of BECs of 39K and
133Cs atoms was demonstrated. The production of BECs of both atomic species is an impor-
tant step towards future investigation of ultracold gases of K and Cs atoms as well as KCs
ground-state molecules within the K−Cs apparatus. For each atomic species, we follow an in-
dividual experimental route towards Bose-Einstein condensation. The experimental sequences
are summarized in the following and numbers for various experimental parameters e.g. beam
waists, temperatures, and so on are given. The experimental values obey statistical errors that
are estimated as follows: beam waists (1 µm), laser beam powers (10 %), temperatures (2 %),
atom numbers (10 %), phase-space densities (20 %), and magnetic field strengths (≤0.01 %).
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Figure 7.1.: Level scheme of 133Cs. Hyperfine structure of the energetically lowest electronic
levels in cesium. The numbers in brackets give the hyperfine energy shift and are calculated
with data from Ref. [San09]. Level spacings are not to scale. The |F = 4〉 → |F ′ = 5〉 transition
(red arrow) is used for laser cooling. The |F = 3〉 → |F ′ = 3〉 transition (green arrow) is
employed for repumping.

7.1.1. Experimental Sequence for a 133Cs BEC

The experimental procedure for making a 133Cs BEC is essentially the one demonstrated in
Ref. [Web03b]. The sequence begins by loading a 3D-MOT with atoms from the atomic beam
that is sent from the Cs 2D+-MOT towards the main chamber. The Cs oven at the Cs 2D-MOT
chamber is heated and temperature stabilized to a temperature of around ∼ 30 ◦C. The re-
sulting typical operating pressure inside the Cs 2D-MOT chamber is dominated by the partial
pressure of Cs and is between 10−6 and 10−7 mbar. In contrast, the pressure within the main
chamber is below 1× 10−10 mbar. The latter is measured by lifetimes of atoms trapped within
a magnetic quadrupole trap.

Figure 7.1 shows the level scheme of cesium and indicates the atomic transitions that are
used for cooling and repumping of Cs atoms within the 2D+- and 3D-MOT. The laser light
for cooling and repumping is generated by two diode laser systems, which are described in
Ref. [Grö17a]. The laser systems are locked to the hyperfine transitions |F = 4〉 → |F ′ = 5〉
and |F = 3〉 → |F ′ = 2〉 of the 6S1/2 → 6P3/2 line via modulation transfer spectroscopy.
Two subsequent tapered amplifiers increase the available laser power for cooling cesium to in
total 300 mW. To change the intensities and frequencies of the laser beams during the cooling
procedure, acousto-optical modulators that are placed after the tapered amplifiers allow for
experimental control of these parameters. A pair of magnetic coils (gradient coils) create the
magnetic field gradient (7.5 G/cm) that is required for the 3D-MOT. The gradient coils are
installed within the top and bottom inverted viewports of the main chamber (see Sec. 6.3.1)
together with five other magnetic coil pairs that are used to generate homogeneous magnetic
offset fields. The design of these magnetic coils is described in Ref. [Grö17a].
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The 3D-MOT is loaded at a rate of 2 × 108 atoms/s and saturates after about 4 s. Once
saturated, the 3D-MOT contains around 3×108 atoms at a temperature of 115 µK. After the 3D-
MOT loading has stopped, the magnetic field gradient is raised to 20 G/cm and the detuning
of the 3D-MOT cooling light is increased to−60 MHz. With these laser parameters the 3D-MOT
is compressed (compressed MOT phase) and the atomic density increases. The compressed MOT
phase lasts for 10 ms. Shortly before the compressed MOT phase ends and the cooling light is
switched off, the repumper laser power is ramped down to zero. In this way, the atoms are
pumped into the |F = 3〉 state and are prepared for Raman sideband cooling.

For Raman sideband cooling the compressed Cs cloud, containing around 2× 108 atoms
at a temperature of 42 µK, is loaded into a 3D optical lattice (Raman lattice). The Raman lattice
is generated by four laser beams. The laser light for the Raman lattice stems from the MOT
laser setup and is frequency-shifted into resonance with the |F = 4〉 → |F ′ = 4〉 transition.
To bring the vibrational states |N〉 of the trapped Cs atoms in the hyperfine Zeeman state
|F = 3,MF 〉 into degeneracy with the vibrational state |N − 1〉 of the hyperfine Zeeman state
|F = 3,MF − 1〉, a magnetic offset field is switched on and adjusted in field strength. The
Raman lattice laser light then drives degenerate Raman transitions and repumps the atoms
that have fallen into the |F = 4〉 state (degenerate Raman sideband cooling) [Web03b, Tre01].
An almost purely σ+−polarized laser beam that is resonant with the |F = 3〉 → |F ′ = 2〉
transition continuously pumps the Cs atoms from the state |F = 3,MF = 1〉 back into state
|F = 3,MF = 3〉. At the end of the 14 ms long Raman cooling phase, the Cs atom cloud is
almost entirely (90 %) spin-polarized into state |F = 3,MF = 3〉 with about 5.5 × 107 atoms
at a temperature of about ∼ 500 nK. The 1/e-radius of the atom cloud at this point is around
385 µm. Having a phase-space density ofD = 2×10−3 and an atom density of 2.4× 1011 cm−3,
the Raman-cooled atomic sample provides an adequate basis for evaporative cooling.

To evaporatively cool the Cs cloud, the laser cooled Cs atoms are loaded into an optical
dipole trap (reservoir trap). The dipole trap is formed by two horizontal laser beams that cross
each other. The laser beams are formed by one 1064 nm laser beam in bow-tie configuration,
which has a laser power of 20 W. The reservoir trap has a trap depth of about kB×11 µK and
is already switched on during the MOT phase. To capture a large amount of the atoms from
the Raman-cooled Cs cloud, the dipole trap laser beams are chosen to be rather wide and have
beam waists of 550 µm. The confinement of the reservoir trap is too weak to hold the Cs atoms
against gravity. For this reason, the Cs atoms are magnetically levitated within the reservoir
trap. Magnetic levitation is achieved through a vertical field gradient of 31.4 G/cm, which
counterbalances gravity for atoms in the |F = 3,MF = 3〉 state. Atoms in other states are not
levitated and lost, leaving behind a fully spin-polarized atomic sample.

To load the Raman-cooled Cs atoms into the reservoir trap, the Raman lattice is switched
off and the magnetic levitation field is switched on. Within the first 2 ms, the atoms are over-
levitated and then held for 800 ms within the reservoir trap. At the same time, the magnetic
offset field is changed to 177 G. At this magnetic field strength, the cesium scattering length is
around ascatt ≈ 1850 a0 and leads to an increased collision rate between Cs atoms. After trans-
fering the Cs atoms into the reservoir trap, the reservoir trap contains about 1.5 × 107 atoms
at a slightly increased temperature of 1.7 µK due to phase-space mismatch. To increase the
atomic density within the reservoir trap, the optical trapping potential is locally stiffened. For
this, two tightly focused 1064 nm laser beams, one horizontal laser beam (dimple beam, beam
waist 43 µm) and one vertical laser beam (guide beam, beam waist 125 µm), are overlapped with
the reservoir trap. As a result, a dimple is generated within the reservoir trap in which elas-
tically scattered atoms accumulate. To optimize the loading of the dimple trap, the scattering
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Figure 7.2.: Normalized integrated optical density distributions for ultracold samples of
133Cs (a)-(c) and 39K atoms (d)-(f) during evaporative cooling. The distributions are obtained
from integration of the optical density along the horizontal axis of time-of-flight images such
as those shown in the insets of (c) and (f). The depicted distributions correspond to differ-
ent stages of evaporative cooling: (a)+(d) beginning of evaporative cooling, (b)+(e) during
evaporative cooling, and (c)+(f) end of evaporation. The red lines correspond to bimodal fits,
whereas the dotted lines correspond to Gaussian distributions that describe the thermal frac-
tion of the atom clouds. The distortions within the absorption image of 39K atoms in (f) result
from atom-induced lensing effects and lens aberrations. Reprinted Figure with permission
from Ref. [Grö16]. Copyright (2016) by Taylor & Francis.

length ascatt of the Cs atoms is tuned first to 900 a0 and then to 380 a0 during the loading. Af-
ter the Cs atoms have spent about ∼1.5 s within the dimple trap, the number of Cs atoms in
state |F = 3,MF = 3〉 within the dimple trap is 2.2 × 106 and the local phase-space density is
D = 8× 10−2.

As a last step towards BEC formation, evaporative cooling of the Cs atoms within the
dimple trap is induced. To that end, first the reservoir trap is switched off, such that only
Cs atoms within the dimple trap remain. Subsequently, the power of the dimple beam is
lowered in two ramps of each 2 s duration from initially 100 mW to 1.5 mW. Simultaneously,
the power of the guide beam is lowered from 800 mW to 10 mW. In parallel, to decrease atom
losses owing to three-body collisions, the magnetic offset field strength and thus the scattering
length ascatt is reduced. Moreover, the magnetic field gradient is increased to 31.9 G/cm and
thereby compensates for trapping effects of the magnetic coils. When evaporation is finished,
the dimple trap contains a nearly pure BEC of 4× 104 atoms.

Figure 7.2 (a)-(c) shows the change in the integrated optical density distributions of ultra-
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cold Cs samples during evaporative cooling. The integrated optical density distributions are
obtained through integration of the optical density along the horizontal direction of time-of-
flight absorption images. The time-of-flight images used for the data in Fig. 7.2 were taken
after 60 ms of levitated expansion with nearly zero scattering length. Each integrated optical
density distribution curve is the result of averaging over four profiles.

The transition from a thermal Boltzmann gas to a BEC becomes apparent in the inte-
grated optical density distributions. At an early stage of evaporative cooling, the gas is still
thermal and the integrated optical density distribution follows a Boltzmann distribution (Fig.
7.2 (a)). At reduced trap depths, the distribution becomes bimodal and shows the onset of
an inverted-parabolic distribution, which is also known as Thomas-Fermi distribution (Fig. 7.2
(b)). A Thomas-Fermi distribution is characteristic for a BEC within a harmonic trap [San14,
Ket99]. Towards the end of evaporative cooling, the integrated optical density distribution
is a nearly pure Thomas-Fermi distribution (Fig. 7.2 (c)). From Fig. 7.2 (c) the radius of the
in-trap Thomas-Fermi distribution of the atoms is deduced to be 7 µm in horizontal direction
and 24 µm in the vertical direction.

7.1.2. Experimental Sequence for a 39K BEC

The experimental sequence for the formation of a 39K BEC within the K−Cs apparatus begins
by loading of a 3D-MOT. The 3D-MOT captures 39K atoms from the atomic beam that is ejected
by the 39K 2D+-MOT. The oven at the K 2D-MOT chamber is heated to a temperature of around
∼ 60 ◦C. The laser light used for the 39K 2D+- and 3D-MOT is generated by a laser system that
is locked to the |F = 2〉 → |F ′ = 3〉 transition of the 4S1/2 → 4P3/2 line of 39K. The level scheme
of 39K is depicted in Fig. 5.2. The potassium laser system and its optical setup for frequency
shifting the laser light is described in Ref. [Grö17a]. Both, laser system and optical setup, are
designed such that cooling laser light for the different potassium isotopes can be generated
with the same setup. The experiments in this Chapter, however, are only concerned with the
bosonic isotope 39K.

The 39K 3D-MOT (magnetic field gradient 7.5 G/cm) is loaded within 4 s and then con-
tains around 8.5× 108 atoms. Once the 39K 3D-MOT is loaded, it is compressed by increasing
the detuning of the cooling light to −40 MHz and steepening the magnetic field gradient to 30
G/cm, similarly to the experimental Cs sequence. The number of atoms within the compressed
3D-MOT is around 8× 108 atoms at a temperature of 2.2 mK.

Following the compressed 3D-MOT, the 39K sample is laser cooled via optical molasses
cooling on the 4S1/2 → 4P3/2 line. During the molasses phase, the frequency of the molasses
light is red-detuned from the |F = 2〉 → |F ′ = 3〉 transition and the detuning is increased from
−2 MHz to −9 MHz. If the detuning of the molasses cooling light were further increased, the
39K sample would heat up. The reason for this heating is the appearance of negative friction
forces caused by the |F = 2〉 → |F ′ = 2〉 transition. Since the hyperfine splitting of the 4P3/2

level is comparable to its natural line width, optical molasses cooling on the principal D2 line
is weakened. With optical molasses cooling on the principal D2 line, a temperature of around
30 µK is achieved for the 39K sample within our setup.

To further reduce the temperature of the 39K sample, gray molasses cooling is performed
on the 4S1/2 → 4P1/2 line. Gray-molasses cooling of 39K atoms has first been demonstrated
in Ref. [Sal13]. For gray molasses cooling, the cooling and repumper light (derived from
a home-built master laser) are both blue-detuned by 26 MHz relative to the |F ′ = 2〉 state
of the 4P1/2 fine structure level. At the end of gray molasses cooling, the 39K sample has a
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temperature of 7 µK. To polarize the 39K atoms into the |F = 1,MF = −1〉 state, the magnetic
offset field is set to 2 G and a polarizer beam that is resonant with the |F = 1〉 → |F ′ = 1〉
transition and with σ− polarization is applied. Atoms that have not been transferred into the
|F = 1,MF = −1〉 state are eliminated by loading the laser cooled atoms into a magnetic
trap with a field gradient of 30 G/cm. Due to the background scattering length of abg =
−33 a0 for 39K a Ramsauer-Townsend minimum in the collisional cross-section shows up at
a temperature of 400 µK [Lan12]. The Ramsauer-Townsend minimum compromises the use
of forced evaporative cooling in the magnetic trap. For evaporative cooling, the potassium
sample is therefore loaded into a dipole trap.

The dipole trap is created by a focused two-color laser beam with wavelengths of 1064 nm
and 880.25 nm. The spatial confinement resulting from the focused 1064 nm laser beam (20 µm
beam waist) enhances the collisional rate of the 39K atoms. To allow for forced evaporative
cooling, the magnetic trap is switched off. Thereafter the power of the 1064 nm laser beam is
reduced from 18 W to zero in two ramps. In parallel, the power of the 880.25 nm laser beam
is lowered from 28 mW to 2.8 mW. To reduce three-body losses, the scattering length of the
39K atoms is set to ascatt = 57 a0 during the first ramp and to ascatt = 225 a0 for the second
ramp. At the end of evaporative cooling, the 39K BEC contains around 9 × 104 atoms in state
|F = 1,MF = −1〉.

Analogously to the discussion of the experimental cesium sequence, integrated optical
density profiles of the 39K sample are observed during evaporative cooling. Figure 7.2 shows
the integrated optical density profiles (d) after the first evaporation ramp, (e) during the sec-
ond evaporation ramp, and (f) at the end of evaporation. The optical density profiles (d)-(f)
visualize the phase transition from a thermal 39K gas to a BEC. The distributions are obtained
from time-of-flight absorption images, like that in Fig. 7.2 (f), after 10 ms of expansion at zero
magnetic field. The distortions within the time-of-flight images result most likely from atom-
induced lensing effects and aberrations of the imaging system.

7.1.3. Conclusion

The measurements summarized in this Section demonstrate the independent experimental
production of 39K and 133Cs BECs in our new quantum gas apparatus. The results show that
the design and realization of the K−Cs apparatus was successful up to the stage of producing
ultracold quantum gases. The different properties of 39K and 133Cs with respect to laser cool-
ing make a parallel BEC production difficult. For that reason, the two species are condensed
sequentially within one experimental run. The cooling sequences are designed such that the
two atomic samples can be spatially overlapped after independent production. This feature
is important for the investigation of interspecies Feshbach resonances in ultracold mixtures of
39K and 133Cs atoms.

7.2. 39K−133Cs Interspecies Feshbach Resonances

For future production of KCs molecules within the K−Cs apparatus, the knowledge of the
positions and widths of interspecies Feshbach resonances in mixtures of ultracold K and Cs
atoms is indispensable. Interspecies Feshbach resonance positions and widths in K−Cs mix-
tures have been calculated for all three K isotopes in Ref. [Pat14] on the basis of interaction
potentials that were calculated in Ref. [Fer13]. These Feshbach resonances, however, have not
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been experimentally confirmed so far. Therefore, interspecies Feshbach resonances in an ul-
tracold 39K−133Cs mixture are studied experimentally within our second publication [Grö17c]
for magnetic field strengths between 0 and 650 G.

7.2.1. Experimental Sequence for Observation of Feshbach Resonances

For the observation of Feshbach resonances, it is sufficient to work with thermal atomic sam-
ples in the microkelvin regime. Thus, the production of quantum-degenerate atomic samples
is not necessary. In the experiments presented in this Section, atomic 39K−133Cs mixtures are
created in a sequential way. Each experimental run begins with the preparation of an ultracold
39K sample as described in Ref. [Grö16] and summarized in the previous Section. First, 39K
atoms are laser cooled and spin-polarized into the |F = 1,MF = −1〉 state with a magnetic
quadrupole trap. After spin polarization, the 39K atoms are loaded into a horizontal single-
beam optical dipole trap at wavelength 1064 nm. The dipole trap beam has a beam waist of
26 µm and a power of 15 W. To induce evaporative cooling of the optically trapped 39K atoms,
the power of the dipole trap beam is decreased over a period of 1.5 s to 150 mW. During evap-
orative cooling of the 39K atoms the dipole trap is lifted by 1.2 mm along the vertical axis using
a linear translation stage. By doing so, the center of the magnetic trap is emptied for the fol-
lowing production of an atomic Cs sample. Owing to magnetization effects of the stainless
steel main chamber that are induced through the K quadrupole trap, a series of magnetic field
pulses with field strengths up to 1000 G and durations of 100 ms is applied. The magnetic field
pulses polarize the main chamber and allow for subsequent laser cooling of Cs atoms without
readjustments of the magnetic field.

In a next step, an ultracold 133Cs sample is prepared. To that end, a Cs 3D-MOT is loaded.
At the same time a single-beam dipole trap, which is aligned to the center of the Cs 3D-MOT,
is switched on. The dipole trap beam has a beam waist of 250 µm, power of 15 W, and wave-
length of ∼1070 nm.

Once the Cs 3D-MOT is loaded, the previously prepared 39K sample is moved down-
wards by 0.79 mm to overlap the 39K atoms with the 133Cs atoms. During the vertical transport
the beam waist of the dipole trap beam that holds the 39K sample is increased to 63 µm and the
power is increased to 1.2 W. To further cool the 133Cs atoms within the 3D-MOT, the Cs 3D-
MOT is compressed and 3D degenerate Raman sideband cooling is applied. The 133Cs atoms
are cooled into the crossed dipole trap that is formed by the two individual K and Cs dipole
traps. Following a hold time of 80 ms, the 39K and 133Cs atoms have thermalized separately
at different equilibrium temperatures of 3 µK and 7 µK, respectively. The capability to sepa-
rate thermalization indicates that the background scattering length between 39K and 133Cs, far
away from any Feshbach resonance, is relatively small and thus does not enable joint thermal-
ization. At this point, the number of atoms within the crossed dipole trap is for 39K around
∼ 1×105 atoms and about as much for 133Cs. The maximum atom densities are nK = 1.2×1012

cm−3 for 39K and nCs = 9× 1011 cm−3 for 133Cs. The difference in particle density is a result of
different equilibrium temperatures and of the different trap depths that the atoms experience.

The 39K sample within the crossed dipole trap is entirely polarized into the state |F =
1,MF = −1〉 whereas 80 % of the 133Cs atoms occupy the energetically lowest hyperfine sub-
level |F = 3,MF = 3〉. The remaining 133Cs atoms reside largely in state |F = 3,MF = 2〉. To
spin-polarize the 133Cs atoms into state |F = 3,MF = 3〉, a microwave pulse (resonant with
the transition |F = 3,MF = 2〉 → |F = 4〉) and a laser pulse (resonant with the transition 6S1/2

|F = 4〉 → 6P3/2 |F ′ = 5〉) is used.
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Figure 7.3.: Experimental signatures of an interspecies Feshbach resonance within a |K :
c〉 − |Cs : a〉 mixture. (a) Remaining fraction of 39K atoms relative to the number of atoms of
a 39K sample without 133Cs atoms following a 100 ms−hold time with fixed trap depth. Data
points are averages of at least two measurements. The solid curve is a Lorentzian function that
is fitted to the experimental data. (b) Temperature of the 39K sample after holding the mix-
ture for 900 ms within the crossed dipole trap. Data points are averages of five time-of-flight
measurements with different expansion times. Magnetization effects of the main chamber in-
hibited having more repetitions for the temperature measurements. The error bars indicate
the statistical errors of the fits used to extract the temperature. Reprinted Figure from Ref.
[Grö17c]. Copyright (2017) by the American Physical Society.

At this stage, to observe interspecies Feshbach resonances, the strength of the magnetic
offset field is set to any desired value and held there for 900 ms to 1300 ms. In the present ex-
periments, the chosen magnetic offset field strengths are between 0 G and 650 G. For magnetic
field strengths close to an interspecies Feshbach resonance, the interspecies scattering length
becomes larger in absolute value and thus atoms are subject to enhanced three-body collisions.
As a result, the number of atoms within the crossed dipole trap is reduced. Increased atom
loss therefore represents a characteristic signature for the presence of an interspecies Feshbach
resonance. In the present case, Feshbach resonances are detected through loss of 39K atoms
and heating of the 39K sample owing to intensified interaction with the hotter 133Cs atoms.
Atom loss is identified after the hold time through absorption imaging of the remaining 39K
atom cloud. To enhance the Feshbach-induced loss of 39K atoms, the trap depth of the crossed
dipole trap is lowered during the hold time.

In the remainder of this Section, the Zeeman states of the hyperfine ground state of 39K
and 133Cs are designated with letters a, b, c,. . . and so on in order of increasing energy. This
designation leads to the notation:

|K : a〉 ≡ |F = 1,MF = 1〉,
|K : b〉 ≡ |F = 1,MF = 0〉,
|K : c〉 ≡ |F = 1,MF = −1〉,

|Cs : a〉 ≡ |F = 3,MF = 3〉,
|Cs : b〉 ≡ |F = 3,MF = 2〉,

...

(7.1)
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Table 7.1.: Parameters of interspecies Feshbach resonances. Positions and widths of inter-
species Feshbach resonances in mixtures of |K : a〉 − |Cs : a〉, |K : b〉 − |Cs : a〉, and
|K : c〉− |Cs : a〉. The experimentally obtained parameters are fit parameters obtained from fit-
ting Lorentzian functions to the data. The entity δres corresponds to the FWHM of a Lorentzian
function. Reprinted Table from Ref. [Grö17c]. Copyright (2017) by the American Physical So-
ciety.

Experiment Theory (potentials from Ref. [Fer13])

Mixture Bres (G) δres (G) Bres (G) ∆res (G)

|K : a〉+ |Cs : a〉 361.1(1) 3.2(4) 341.89 4.7
442.59(1) 0.28(3) 421.37 0.38

|K : b〉+ |Cs : a〉 419.3(1) 3.0(5) 399.93 4.3
513.12(1) 0.16(6) 491.39 0.55

|K : c〉+ |Cs : a〉 491.5(1) 2.1(4) 471.97 3.8
599.32(3) 0.5(1) 575.67 0.44

7.2.2. Experimental Results

In a first series of measurements, interspecies Feshbach resonances within a |K : c〉 − |Cs : a〉
mixture are investigated. Throughout the magnetic field scan from 0 G to 650 G two loss
features are observed at magnetic field strengths of 491.5 G and 599.3 G, respectively. Figure
7.3 (a) shows the detected 39K fraction around the Feshbach resonance at 491.5 G. The fraction
of remaining 39K atoms shows a distinct minimum and a clear maximum. The positions Bres
and the FWHM widths δres of the minima are found by fitting Lorentzian functions to the data.
Table 7.1 summarizes the fit parameters of the experimentally observed Feshbach resonances
as well as the statistical errors of the fits. Due to fluctuations of the magnetic polarization of the
stainless steel main chamber during the measurements, a systematic error of around ±0.3 G
has to be considered. The maximum of the remaining atom number that appears at a magnetic
field strength of 495.5 G in Fig. 7.3 (a) is attributed to the zero-crossing of the scattering length
on the high-field side of the Feshbach resonance.

To characterize the heating of the 39K sample in the vicinity of an interspecies Feshbach
resonance, the temperature of the 39K sample is deduced from time-of-flight images. The tem-
perature of the 39K sample peaks around a magnetic field strength of 491.5 G, i.e. at the same
magnetic field strength as the atom loss feature, and increases from 3.0 µK to 4.5 µK. Figure
7.3 (b) shows the experimental results of the temperature measurements for the Feshbach res-
onance at 491.5 G.

The experimental sequence for determination of interspecies Feshbach resonances in mix-
tures where the 39K atoms are in state |K : b〉 or |K : a〉 is analogue to the one described above.
To transfer the 39K atoms, initially residing in state |K : c〉, to state |K : b〉 and thereafter to
state |K : a〉, radio-frequency adiabatic passage is used. The measurements for the two mix-
tures |K : b〉 − |Cs : a〉 and |K : a〉 − |Cs : a〉 yield two interspecies Feshbach resonances for
each mixture. Figure 7.4 (a) shows the experimental results for the remaining 39K atom num-
bers for all measured Feshbach resonances and Table 7.1 summarizes the fit parameters of all
experimentally observed interspecies Feshbach resonances.
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Figure 7.4.: Interspecies Feshbach spectrum of a 39K−133Cs mixture. (a) Remaining number
of 39K atoms around interspecies Feshbach resonances for mixtures of |Cs : a〉 with |K : a〉
(black), |K : b〉 (red), and |K : c〉 (blue). (b) Interspecies scattering length and Feshbach
resonance positions calculated from optimized interaction potentials for 39K−133Cs mixtures.
Reprinted Figure from Ref. [Grö17c]. Copyright (2017) by the American Physical Society.

7.2.3. Refinement of Interaction Potentials

The experimentally measured Feshbach resonances can be compared to predicted values. The
latter are obtained from 39K−133Cs interaction potentials that had been previously calculated
in Ref. [Fer13]. The right columns of Table 7.1 list the predicted positions and widths of the
observed Feshbach resonances. All theoretical resonance positions differ from the experimen-
tal ones and are around 20 G lower. The discrepancy in resonance positions indicates that the
interaction potentials from Ref. [Fer13] need to be refined in order to reproduce the observed
resonance positions. The discussion of the refinement of the interaction potentials is beyond
the scope of this Section. A detailed treatment of how the interaction potential were refined can
be found in Ref. [Grö17c]. In short, optimized potentials for 39K133Cs molecules are obtained
through least-squares fits of potential parameters to the observed resonance positions.

The main results of the potential refinements can be summarized as follows: using the re-
fined interaction potentials, the new calculated resonance positions match with the observed
ones within± 0.8 G. Figure 7.4 (b) depicts the newly calculated 39K−133Cs interspecies scatter-
ing lengths as a function of the magnetic offset field strength. The new background scattering
lengths abg determined from the calculations are on the order of 70 a0 [Grö17c]. Specific values
for the background scattering lengths are listed in the Supplemental Material of the publication
[See]. Besides the six interspecies Feshbach resonances that have been observed in the present
measurements, the optimized potentials predict six additional s-wave resonances between 319
G and 619 G. The latter resonances might be useful for formation of KCs molecules.

The measurements of the interspecies Feshbach resonance positions for 39K−133Cs mix-
tures also allow for the refinement of the interaction potentials for 40K−133Cs and 41K−133Cs
mixtures. With this refinement, scattering lengths as well as bound-state energies for 40K−133Cs
and 41K−133Cs mixtures can be calculated and are presented in Ref. [Grö17c].
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7.2.4. Conclusion and Outlook

The measurements summarized in this Section led to the observation of interspecies Feshbach
resonances in ultracold 39K−133Cs mixtures. Since the experimentally observed resonance
positions deviated from the calculated positions, the interaction potentials for 39K−133Cs,
40K−133Cs, and 41K−133Cs mixtures were refined. The optimized interaction potentials were
then used to improve predictions of the scattering lengths, background scattering lengths, and
bound-state properties for 39K−133Cs, 40K−133Cs, and 41K−133Cs mixtures.

In ultracold quantum gas mixtures of different atomic species, the ability to tune col-
lisional interactions can be used to create diatomic, heteronuclear molecules in their rovibra-
tional ground state. In most cases, the production of ultracold diatomic ground-state molecules
includes two steps: at first, atoms in the degenerate quantum gas mixtures are associated pair-
wise into weakly bound Feshbach molecules using the mechanism of interspecies Feshbach
resonances (magneto-association). The mechanism of magneto-association is discussed in detail
in Ref. [Köh06]. Subsequently, the weakly bound Feshbach molecules are transferred into their
rovibrational ground state by stimulated Raman adiabatic passage (STIRAP) [Ber98].

Magneto-association of ultracold molecules has been demonstrated in 3D bulk quantum
gas mixtures as well as with atoms that are prepared in optical lattices [Ni08, Mol14, Tak14,
Guo16, Mos15, Rei17]. For formation of ultracold, heteronuclear dimers in optical lattices,
ultracold samples of the two atomic species are first loaded into an optical lattice and then
merged together to form a quantum mixture. To occupy each lattice site with precisely one
atom of each species, the atomic system is brought into a Bose-Bose double-species Mott insu-
lator state [Rei17] or a Bose-Fermi Mott-band insulator state [Mos15]. By using an interspecies
Feshbach resonance, the atom pairs at each lattice site are transferred into a molecular state
via magneto-association. The experimental procedure just outlined makes use of interspecies
Feshbach resonances at two points: initially, an interspecies Feshbach resonance is employed
to set the interspecies scattering length to zero and thus to allow for unobstructed mixing
of the atomic samples. Later, an interspecies Feshbach resonance is employed for magneto-
association. The results of the present measurements therefore form a valuable basis towards
the production of ultracold KCs ground-state molecules.

7.3. Degenerate Raman Sideband Cooling of 39K

In order to achieve better starting conditions for evaporative cooling of 39K atoms within our
experimental sequence for 39K BECs, degenerate Raman sideband cooling (dRSC) was im-
plemented and the experimental results were presented in our third publication [Grö17b].
The experimental strategy towards formation of atomic BECs is well established nowadays
and generally includes two steps: atoms within a trap are first precooled to low temperatures
(∼ 10−6 µK) and high densities (∼ 1011 cm−3) by laser cooling. The phase transition from a
thermal gas to a Bose-condensed gas is induced thereafter by subsequent evaporative cooling.
To produce condensates with a larger number of atoms, it is beneficial to improve the starting
conditions for evaporative cooling, i.e. to achieve a lower temperature and a higher density at
the end of the laser cooling stage. For this purpose, 3D dRSC was implemented as final laser
cooling step in our 39K cooling sequence, which has been described in Sec. 7.1. Degenerate
Raman sideband cooling of atomic samples works efficiently as long as the hyperfine levels of
the excited state are well resolved. Since the 4P3/2 hyperfine splitting of 39K is comparable to
the line width of the 4S1/2 → 4P3/2 transition, dRSC on the D2 line is difficult. Therefore, the
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Figure 7.5.: Degenerate D1 Raman sideband cooling of 39K. The employed scheme for dRSC
is similar to that operating on the D2 transition for production of Cs condensates. (a) Configu-
ration of the Raman lattice beams (red arrows), which have linear polarization, and polarizer
beam as well as repumper beam (blue-brown arrow), which both have circular polarization.
A magnetic offset field ~BZ is applied in z−direction. (b) The magnetic offset field ~BZ induces
an energy shift ∆EZ between the Zeeman states of the F = 2 hyperfine ground state and
brings the vibrational states of different Zeeman states into degeneracy. The Raman lattice
light induces two-photon Raman transitions (black, horizontal arrows) and transfers atoms
from states |MF = −2, N〉 to states |MF = 0, N − 2〉. A polarizer beam (blue arrows) with a
strong σ− polarization component and a much weaker π polarization component Stark-shifts
the state |F = 2,MF = 0〉 in energy by ∆ES and broadens the vibrational levels. The inset
shows the repumper beam (brown arrow) as well as spontaneous decay transitions into the
F = 2 (grey, wiggled arrows) and F = 1 (grey, dashed arrows) hyperfine ground states. Spon-
taneous transitions into the |F = 2,MF = −2〉 dark state are shown as black, wiggled arrows.
Reprinted Figure from Ref. [Grö17b]. Copyright (2017) by the American Physical Society.
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Figure 7.6.: Laser detunings for dRSC of 39K. Detunings of the Raman lattice lasers (red ar-
row), polarizer laser (blue arrow), and repumper laser (brown arrow). Figure adapted from
Ref. [Grö17b].

resolved hyperfine structure of the 4P1/2 level was exploited to demonstrate dRSC on the D1

line of 39K within the K−Cs apparatus.

7.3.1. Principle of D1 Line Degenerate Raman Sideband Cooling

The experimental scheme for dRSC of 39K atoms that is used in the K−Cs apparatus is similar
to that generally employed on the D2 transition for production of Cs condensates [Han00,
Vul98, Ker00, Ham98]. A far-off resonance 3D optical lattice is used to bind 39K atoms to single
lattice sites. The optical lattice is generated by three laser beams of which two are running
waves and one is a retro-reflected standing wave. Figure 7.5 (a) depicts the spatial arrangement
of the Raman lattice laser beams. The Raman lattice laser light is red-detuned from the 4S1/2 →
4P3/2 transition. Figure 7.6 shows the detunings of all laser beams that are employed for dRSC.
The on-site lattice potential of each atom can be approximated by a harmonic potential. The
total state of a trapped 39K atom in the F = 2 hyperfine ground state is then given through its
internal Zeeman state MF as well as its motional state |N〉 and can be written as |MF , N〉.

At the beginning of dRSC, the energy of the trapped 39K atoms is larger than the spacing
of the harmonic oscillator states |N〉 of the lattice sites. The atoms therefore populate different
vibrational states after being loaded into the Raman lattice. By applying a magnetic offset field
~BZ the Zeeman states of the F = 2 hyperfine level are shifted in energy by ∆EZ relative to
each other. To induce dRSC, the strength of the magnetic offset field is chosen such that the
state |MF = −2, N〉 becomes degenerate with the state |MF = −1, N − 1〉 and hence also with
|MF = 0, N−2〉. Figure 7.5 (b) depicts the harmonic on-site potential that is experienced by the
atoms in the individual Zeeman states and illustrates the principle of degenerate Raman side-
band cooling on the D1 optical transition of 39K. For degeneracy, the Raman lattice laser light
drives two-photon Raman transitions between degenerate states |MF , N〉 such as the transi-
tion |MF = −2, N〉 ↔ |MF = −1, N − 1〉. To maximize the Raman coupling, the polarizations
of the running lattice waves are linear and fixed to lie within one plane. The polarization of the
retro-reflected lattice laser beam is linear as well and the polarization vector forms an angle of
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45° with the magnetic field axis and lies within the same plane that includes the polarization
vectors of the running waves.

During one cooling cycle, an atom that has been originally in state |MF = −2, N〉 is
transferred into state |MF = 0, N − 2〉 via two consecutive Raman transitions as shown in Fig.
7.5 (b). A σ−−polarized laser beam (the so-called polarizer beam) excites the atom from state
|MF = 0, N − 2〉 into the excited state |F ′ = 1,MF ′ = −1〉 from which it can decay into state
|MF = −2, N − 2〉, completing one cooling cycle. The polarizer beam propagates along the
direction of the magnetic field ~BZ and is blue-detuned from the |F = 2〉 → |F ′ = 1〉 transition
by 8 MHz (see Fig. 7.6). In the Lamb-Dicke regime, the vibrational quantum number N of
the atom is conserved during the spontaneous decay from state |F ′ = 1,MF ′ = −1〉. One
cooling cycle thus lowers the motional state of a trapped 39K atom by two vibrational quanta.
Cooling is repeated until the atom ends in state |MF = −2, N = 0〉, which is decoupled from
the polarizer beam and hence a dark state. If the atom ends in state |MF = −1, 0〉, π−polarized
light depopulates that state. The weak π−polarized light is generated by introducing a small
angle between the polarizer beam and the magnetic field ~BZ. For the case that atoms decay
from state |F ′ = 1,MF ′ = −1〉 into the absolute hyperfine ground state F = 1, a repumper
laser beam (9 MHz red-detuned from the F = 1 → F ′ = 2 transition) with σ− polarization
depopulates the lower hyperfine level.

7.3.2. Experimental Cooling Sequence

To implement dRSC of 39K atoms to the experiment, the experimental sequence for laser cool-
ing of 39K atoms that was used in previous experiments (see Sec. 7.1.2) is modified. The
adapted experimental sequence starts by loading a 39K 3D-MOT, which works on the D2 line.
The 3D-MOT is loaded from a 2D-MOT within 5 s with about 3 × 108 atoms. The originally
subsequent D2 optical molasses cooling is omitted and instead the cooling procedure is now
adopted from Ref. [Sal13]. In short, a compressed MOT phase is induced by increasing the 3D-
MOT magnetic field gradient along the axis of the magnetic coils to 24 G/cm, decreasing the
power of the 3D-MOT repumper beam to 10 mW, and increasing the detuning of the 3D-MOT
cooling light to −34 MHz within 2 ms. Thereafter, the magnetic field gradient is reduced to 6
G/cm, the MOT repumper power is lowered to 2 mW, and the MOT cooling light is detuned
to −40 MHz and reduced in power to 40 mW. Overall, this cooling step yields atomic samples
with temperatures around 150 µK. Next, a D1 gray molasses cools the 39K sample and reduces
the requirements on the lattice depth of the Raman lattice. After gray molasses cooling the 39K
sample has reached a temperature of 8 µK with insignificant atom loss and has a phase-space
density of D = 1.2 × 10−5. Further details on the gray molasses cooling are discussed in Ref.
[Grö17b]. As a last step of the 39K laser cooling sequence, dRSC is initiated. To compensate
for the anharmonicity of the on-site Raman lattice potentials and the spatial variation of the
Raman lattice depth [Grö16], the magnetic offset field is ramped linearly between 800 mG and
50 mG in the course of the cooling procedure.

For studying the cooling performance of the dRSC scheme, the atoms are released adi-
abatically from the Raman lattice. A Stern-Gerlach experiment is then used to separate the
|F = 2,MF = −2〉 spin component. To determine the temperature of the |F = 2,MF = −2〉
spin component, the expansion of the atom cloud of that spin component in horizontal di-
rection is measured. As the expansion of the atom cloud is proportional to the temperature,
temperatures are given in terms of the cloud radius σx after 30 ms of expansion in the fol-
lowing. In the experiments that are discussed in this Section, a cloud radius of σx = 1 mm
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Figure 7.7.: Cooling efficiency of dRSC on 39K. (a) Final temperature after dRSC for vari-
ous lattice detunings ∆L at a Raman lattice laser power PL = 80 mW. A detuning of ∆L =
−10.8 GHz (vertical line) is used for all further measurements in this Section. Error bars are
smaller than the size of the symbols. (b) Final atom number (solid symbols) and cloud radius
σx (open symbols) for different lattice laser powers PL. Blue symbols correspond to 1.2 × 108

atoms after gray molasses cooling and red symbols relate to 2.8 × 108 atoms. (c) Final atom
number as a function of polarizer detuning ∆P for a fixed polarizer laser power PP = 120 µW.
(d) Final atom number (solid symbols) and cloud radius σx (open symbols) as a function of
PP. In (b) and (d), to guide the eye, the solid lines show a fit with a saturated growth function
and the dashed lines a fit with an exponential decay function. Reprinted Figures from Ref.
[Grö17b]. Copyright (2017) by the American Physical Society.

corresponds to a temperature of about 1.5 µK. The radius σx is the standard deviation and
is obtained through Gaussian fits to the integrated optical density of the atomic cloud, which
in turn is derived from time-of-flight absorption images. The magnetic levitation field that is
required for the Stern-Gerlach separation causes a magnetic force that accelerates the atoms
along the horizontal directions away from the magnetic coil axis. Thus, the cloud radii σx
given in this Section are upper bounds.

7.3.3. Experimental Results

In a first series of measurements, the efficiency of D1 dRSC is studied for different Raman
lattice laser detunings ∆L from the D2 line. For these measurements, the detunings of the
polarizer and repumper beam are kept at ∆P = 8 MHz and ∆R =−9 MHz. Figure 7.7 (a) shows
the temperature of the 39K cloud after dRSC at fixed Raman lattice laser power PL = 80 mW
for different detunings ∆L. With increasing blue detuning (∆L > 0), the final temperature
increases. This rise in temperature can be understood by the fact that the 39K atoms within a
blue-detuned lattice reside in potential minima where the lattice laser intensity is lowest. The
rate of off-resonant excitations is thus reduced as well as the probability for Raman transitions,
which, however, are required for dRSC. In contrast, for increasingly red-detuned lattice light
(∆L < 0), a reduction of the final temperature is observed. In this detuning range, the 39K
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7. Experimental Results

Figure 7.8.: Time dependence of dRSC performance. Final atom number (solid symbols) and
cloud radius σx (open symbols) for different durations tR of dRSC. The dashed line shows a
combined fit with an exponential decay and a linearly increasing function to the experimental
data as a guide to the eye. Reprinted Figure from Ref. [Grö17b]. Copyright (2017) by the
American Physical Society.

atoms reside in potential minima where the lattice laser intensity is maximum. For larger |∆L|,
off-resonant excitations are now suppressed more strongly than Raman transitions, leading to
a lower temperature. On the other hand, a larger |∆L| is observed to cause intensified atom
loss, most likely due to the reduced lattice depth. Since the total power that is available for the
Raman lattice light is limited, the lattice detuning for the following measurements is fixed to
∆L = −10.8 GHz, for which the final phase-space density of the 39K sample is the highest.

To study the influence of the Raman lattice laser power PL on the cooling efficiency, the
atom number and cloud radius σx of the atoms in state |F = 2,MF = −2〉 after free expansion
are measured as a function of PL. The measurements are repeated for two different starting
conditions, i.e. two different initial atom numbers of 1.2 × 108 atoms and 2.8 × 108 atoms.
Figure 7.7 (b) shows the experimental data. The minimum cloud radius σx, and hence the
minimum temperature, is reached for a total lattice power of around PL ≈ 30 mW or higher.
At PL ≈ 30 mW, the number of laser-cooled atoms has not saturated and continues to grow for
higher laser power. In our experiments, a lattice laser power of PL = 80 mW is therefore used.

Next, the impact of the polarizer beam on the dRSC is examined. To that end, the polarizer
detuning ∆P and laser power PP are scanned as the number of atoms and the cloud radius σx is
measured. Figure 7.7 (c) shows the number of atoms after dRSC for different detunings ∆P at a
power PP = 120 µW. The final atom number varies strongly with the detuning ∆P. It is largest
for blue detunings between +8 MHz and +15 MHz and has a minimum near resonance (∆P ≈
0). The occurence of the maximum and minimum in the atom number can be explained by the
ac Stark shift ∆ES (see Fig. 7.5) that is induced through the polarizer beam. The polarizer light
shifts as well as broadens the vibrational levels of the |F = 2,MF = 0〉 state. For detunings
larger than +8 MHz, the light shift is sufficiently small to not impair the cooling mechanism.
For ∆P ≈ 0, the light shift eliminates the degeneracy of the vibrational states and thus leads to
a degraded cooling efficiency with a reduced number of atoms in state |F = 2,MF = −2〉.

For a fixed detuning ∆P = 8 MHz, now the dependence of the atom number and cloud ra-
dius σx on the polarizer power PP is studied. Figure 7.7 (d) shows the measurement results. In
order to achieve a noticeable reduction of the cloud radius, i.e. of the temperature, a minimum
polarizer power of approximately 20 µW is needed. For obtaining the lowest temperature and
simultaneously the largest atom number, a polarizer power of about 120 µW is required.
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Table 7.2.: Gray molasses cooling vs. dRSC. Comparison of the performance of gray molasses
cooling (GMC) and dRSC for different atom numbers after GMC. The approximate percentage
of atoms in state |F = 2,MF = −2〉 and the number of atoms in this state is given in the column
’Fraction’ and ’Atom number’, respectively. The column ’T ’ gives the final temperature of the
atoms and D is the phase-space density in free space. Reprinted Table from Ref. [Grö17b].
Copyright (2017) by the American Physical Society.

Fraction (%) Atom number T (µK) D

GMC 1.3× 108 8 1.5× 10−5

dRSC 83 5.6× 107 1.6 6× 10−5

GMC 3× 108 8 1.2× 10−5

dRSC 78 1.4× 108 1.8 1× 10−4

Finally, the cloud radius σx and the atom number are studied as a function of the du-
ration tR of dRSC. Figure 7.8 shows the measurement results for both quantities for different
durations tR. Within the first 7 ms of dRSC the temperature decreases by almost a factor of
two and increases again for longer cooling times. Opposed to this, the number of atoms in
state |F = 2,MF = −2〉 stays nearly constant up to tR = 5 ms and shrinks for larger tR. One
reason for the atom number reduction with longer cooling times could be tunneling of atoms
in higher vibrational states. Tunneling can lead to atom diffusion out of the lattice or collisions
with atoms of populated lattice sites and thus is a potential reason for atom loss.

A similar study of the dependence of the final temperature on the repumper detuning
∆R and intensity IR does not reveal any strong relation, except for a minimum intensity (IR =

0.1 mW/cm2) that is required for inducing dRSC. A faint temperature minimum is observed
for a red-detuned repumper with ∆R = −9 MHz, which is therefore used for all previously
discussed measurements.

Degenerate Raman sideband cooling of 39K samples with the experimentally optimized
parameters discussed above leads to samples with temperatures as low as 1.3 µK. This temper-
ature is much lower than that achieved with gray molasses cooling within our experimental
sequence. Table 7.2 compares the performance of dRSC to gray molasses cooling within the
K−Cs apparatus. The final temperature as well as the phase-space density D after dRSC show
some dependency on the atomic density that is prevalent after gray molasses cooling and prior
to dRSC. For an atom number of 1.3× 108 atoms (3× 108 atoms) at the beginning of dRSC, the
final temperature was 1.6 µK (1.8 µK) and D = 6 × 10−5 (D = 1 × 10−4). To our best knowl-
edge, these values correspond to the lowest temperatures and highest phase-space densities
measured for spin-polarized 39K atoms after laser cooling [Grö17b].

7.3.4. Conclusion

The experiments presented in this Section demonstrate the experimental realization of dRSC
on the D1 optical transition for sub-Doppler laser cooling of 39K samples. In comparison
with the temperatures and phase-space densities that are obtained after gray molasses cool-
ing within the K−Cs apparatus, the modified laser cooling scheme leads to a ten times higher
phase-space density and a four times lower temperature. The demonstrated cooling scheme
therefore leads to improved initial conditions for evaporative cooling within the K−Cs appa-
ratus.

125





8. Design of the Science Chamber
Setup

The science chamber of the K−Cs apparatus facilitates the implementation of the high-resolu-
tion imaging system. It is therefore a crucial part for the performance of fluorescence quantum
gas microscopy of ultracold atoms and molecules in optical lattices. A significant amount of
work of this Thesis thus has been dedicated to the designing and building of the science cham-
ber. This Chapter presents two experimentally realized science chambers and the surrounding
vacuum setups that are required to operate them. The two setups are based on different con-
cepts: a stainless steel chamber and a fused silica glass cell. Both setups include an in-vacuo
lens for high-resolution imaging and in-vacuo electrodes for polarizing KCs molecules. In the
previously built Rb−Cs quantum gas apparatus of the Nägerl group in Innsbruck, the elec-
trodes for generating electric fields have been mounted outside of the fused silica UHV cell.
Due to the alkali-coated inner cell walls, the high electric field of the electrodes caused charg-
ing of the glass cell [Tak14].1 These charging effects and the associated electric field drifts can
possibly be reduced by having the electrodes internal to the fused silica glass cell. The two sci-
ence chambers realized for the K−Cs apparatus rely on a number of home-built components,
whose design and manufacturing are described in detail. With respect to the glass cell science
chamber, the deformation of the glass cell window through which high-resolution imaging
will take place due to the atmospheric pressure is analyzed. The glass cell science chamber
setup has been successfully attached to the main vacuum system and is ready for operation.

8.1. General Considerations

In this Section, we list the experimental requirements on the science chamber and treat the
question of which material is most suited for these purposes.

8.1.1. Experimental Requirements on the Science Chamber

We divide the experimental requirements on the science chamber into three categories: vac-
uum quality, experimental capabilities, and physical shape.

◦ Requirements on vacuum quality

− The science chamber must provide a UHV environment with a pressure of around
10−11 mbar

− To pump on the science chamber independently from the main chamber, the science
chamber must have vacuum pumps at its own disposal

1After switching off the electrodes, the positive and negative charges recombined, leading to time varying electric
fields within the glass cell over several days [Tak19].
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8. Design of the Science Chamber Setup

◦ Requirements on experimental capabilities

− The science chamber has to allow for the implementation of the K−Cs high-resolu-
tion imaging system (see Sec. 3.5.3)

− The science chamber must provide in-vacuo electrodes

− To polarize KCs molecules, the electrodes have to be capable of generating electric
fields with field strengths up to ∼ 2.5 kV/cm

− The electric fields that are generated by the electrodes have to be homogeneous
enough to study spin lattice models, e.g. the Heisenberg XXZ spin lattice model
(see Sec. 1.2.2), with 39KCs molecules

◦ Requirements on physical shape and material

− The science chamber must allow for the optical transport of ultracold atoms from
the main chamber into the science chamber as discussed in Sec. 3.5.2

− For optical lattice generation, internal-state manipulation, and probing optical ac-
cess to the atoms within the science chamber is needed from different directions

− The science chamber windows must have anti-reflection coatings on the inner and
outer surfaces with minimum reflectivity at the imaging wavelengths for K (λK

image =

766 nm) and for Cs (λCs
image = 852 nm) and at 1064 nm for optical lattices

− To hold and align the in-vacuo lens of the high-resolution imaging system and the
in-vacuo elctrodes, an internal mounting construction is required

− Because of limited lab space the overall size of the science chamber has to be as
compact as possible

− The design must aim for a non-magnetic environment

8.1.2. Two Science Chambers: Stainless Steel and Fused Silica

Since we do not want to use different metals within the K−Cs apparatus because of their
different thermal behavior during baking out of the vacuum chamber, the choice of material
for the science chamber restricts to stainless steel and glass. Obviously, the mechanical strength
of a stainless steel chamber is ideal for mounting internal components such as electrodes. If
in future new lasers with different wavelengths will be installed in the experimental setup,
a stainless steel science chamber permits the replacement of viewports with others that have
adapted anti-reflection coatings. A stainless steel chamber is thus particularly beneficial with
respect to flexibility. A significant drawback of a stainless steel science chamber, however, is
the magnetic permeability of stainless steel, which can lead to troubling magnetization effects.

Fused silica glass cells, on the other hand, provide a non-magnetic environment. Fused
silica glass cells with cross sections as small as 1 cm2 have been used in ultracold atom experi-
ments [Gol04]. Thus, the dimensions of a glass cell can be much smaller than for CF stainless
steel chambers. The optical access to a glass cell typically exceeds that of a stainless steel cham-
ber but comes at the expense of other limitations. For example, due to the fragility of glass,
mounting components within a fused silica cell is more complicated compared to a stainless
steel chamber.

Two independent science chamber setups were designed and realized within the course
of this Thesis. The first one is centered around a stainless steel chamber and the second one
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in-vacuo
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viewport

stainless steel science chamber setup

Figure 8.1.: Implementation of the stainless steel science chamber setup to the main cham-
ber. The stainless steel science chamber setup would connect to the gate valve at the main
chamber. A CF40 cross and a CF40 cube hold the science chamber on the left and right side.
The transportation path of the atoms from the main chamber to the science chamber is indi-
cated through a dashed arrow. At the science chamber, an in-vacuo aspheric lens is held above
the center of the science chamber. Together with the externally mounted imaging system,
high-resolution imaging of atoms can be performed from the top of the chamber.

involves a glass cell. At first, the goal of having a stainless steel science chamber was pursued.
After the magnetization effects at the main chamber became apparent (see Sec. 7.2), the work
on the stainless steel science chamber was stopped and the planning of a glass cell science
chamber began. Both science chambers including their surrounding vacuum setups that are
required to operate the two chambers were assembled and tested. Eventually, the glass cell
setup was attached to the main vacuum system.

8.2. Stainless Steel Science Chamber

In this Section, the design and assembly of the stainless steel science chamber and its intended
implementation to the K−Cs apparatus is discussed. Furthermore, comments on the manu-
facturing of a series of home-built vacuum parts are given.
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Figure 8.2.: The realized stainless steel science chamber setup. The central part of the stain-
less steel science chamber setup is a stainless steel science chamber. A CF40 cube and a CF40
cross provide mounting options for an ion pump, two home-built titanium sublimation pumps
(TSPs), an angle valve, as well as an electrical feedthrough (EFT). A double-sided flange at the
CF40 cross is used to connect the science chamber to it. The viewports that were installed
on the CF40 cube are not shown here. Slotted aluminum sleeves protect the horizontal view-
ports against damage. During the test phase of the setup, a residual gas analyzer (RGA) was
connected to the right side of the CF40 cross.
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Figure 8.3.: Titanium sublimation pump. Each of the two home-built TiSub pumps consists
of a commercial titanium filament that is chucked between a stainless steel rod and a stainless
steel extension arm. The stainless steel rods are screwed into the copper pins of a commercial
electrical feedthrough, which were first shortened and then processed to have internal threads
and venting holes.

8.2.1. Overview

The stainless steel science chamber setup centers around a stainless steel chamber with vac-
uum equipment being mounted to two opposite sides of the steel chamber. Figure 8.1 shows a
vertical cut of the stainless steel science chamber setup and demonstrates its intended imple-
mentation to the main vacuum system. The steel chamber was planned to connect to the gate
valve at the main chamber through a CF40 cross. To mechanically support the science chamber
setup and avoid any torque acting on the gate valve, the science chamber setup would be held
by vertical pillars. The optical transport of the atoms from the main chamber to the science
chamber would take place along a horizontal axis over a distance of 480 mm. Right above the
center of the science chamber, the front lens of the imaging system is installed under vacuum
to allow for high-resolution imaging along the vertical axis as shown in Fig. 8.1.

Figure 8.2 shows the completed stainless steel science chamber setup as it was realized.
A spherical CF40 cube2 and a CF40 cross3 connect to the left and right side of the science
chamber in Fig. 8.2 via two opposing, conical CF40-to-CF16 reducers4. The cube and cross
serve for installation of various vacuum components such as viewports, a CF40 angle valve5,
a 4-pin electrical feedthrough6, an ion pump7, and two TiSub pumps. Both TiSub pumps are

2Kimball Physics, MCF275-SphCube-C6.
3Vacom, X40RS-316LNS.
4The CF40 and CF16 flanges of the reducers are made out of stainless steel type 1.4429 ESU.
5VAT, Easy-close all-metal angle valve, CF40, Series 541.
6Lesker, IFTSG041033.
7Agilent Technologies, VacIon Plus 20, StarCell.
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Figure 8.4.: Stainless steel science chamber (top view). The stainless steel science chamber
contains six horizontal CF16 viewports and two vertical CF63 viewports. All viewports are
home-built and anti-reflection coated. The aspheric lens of the imaging system is inside of the
science chamber and is attached to the inner surface of the upper viewport.

home-built. Initially, it was planned to have two science chambers within the K−Cs apparatus.
The second science chamber would have been added to the right flange of the CF40 cube in
Fig. 8.1. For reasons of a relatively long transportation path, this plan was not realized.

Figure 8.3 shows one of our TiSub pumps after completion. The copper pins on the vac-
uum side of the electrical feedthrough were first shortened and equipped with longitudinal
threads and venting holes. Two stainless steel rods were then screwed into the copper pins. A
commercial titanium filament is mechanically clamped in-between the shorter stainless steel
rod and a stainless steel extension arm.

8.2.2. Layout of the Stainless Steel Science Chamber

The stainless steel science chamber is a commercial, octagonal chamber8 that is made out of
austenitic stainless steel of type AISI 316L. It has in total two CF63 flanges and eight CF16
flanges. The chamber is oriented within the setup such that the CF63 flanges are horizontal as
can be seen from Fig. 8.2. All flanges of the science chamber, except for the two CF16 flanges
to which the conical reducers are connected, are equipped with viewports. Figure 8.4 shows a
top view of the stainless steel science chamber with the aluminum sleeves from Fig. 8.2 being

8Kimball Physics, MCF450-SphOct-E2A8.

132



8.2. Stainless Steel Science Chamber

optical transport

CF63 flange

recession
with

seating

electrodes
aspheric lens

groove grabbersatoms Macor® holder

glass substrate

spacer ring

3
.7

m
m

Figure 8.5.: Mounting of the aspheric lens. The figure shows a vertical cut of the stainless steel
science chamber. The top (white) and bottom (blue) CF63 viewports are re-entrant viewports
with a tapered form. The glass substrate of each viewport is positioned within a recession
and glued to the seating. An aluminum ring is glued to the inner surface of the upper glass
substrate (red). It serves as spacer ring for the aspheric lens (purple), which is glued to the
opposite side of the aluminum ring. Upper and lower viewport are identical except for the as-
pheric lens and the aluminum ring. Rod electrodes (green), which are held by Macor® holders
and groove grabbers within the science chamber, allow the generation of electric fields.
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Figure 8.6.: Mounting of the electrodes. (a) Four rod electrodes in parallel, rectangular config-
uration are mounted inside of the stainless steel science chamber. The electrodes are isolated
from the chamber by Macor® holders and are held by groove grabbers. (b) Insulated copper
wires make the connections between the electrodes and the electrical feedthrough. The wires
are guided from the science chamber to the electrical feedthrough through a CF40-to-CF16
reducer. In order to prevent blocking of the transportation beam, the copper wires meander
along four rods. The rods are fixed to a double-sided flange and serve as installation aids for
the wires. At an early stage of building the science chamber setup straight CF40-to-CF16 re-
ducers (as shown here) were used. These were replaced by conical reducers because of their
enhanced gas flow conductance.

134



8.2. Stainless Steel Science Chamber

removed from the viewports. The horizontal CF16 viewports are turned to the outside.
The upper CF63 viewport holds the in-vacuo aspheric lens of the high-resolution imaging

system. In order to bring the lens close to the center of the science chamber where the atoms
would sit, it is a tapered re-entrant viewport. Figure 8.5 shows a vertical cut of the science
chamber and illustrates the shape of the CF63 viewport as well as the location of the aspheric
lens relative to the atoms. A fine-machined metallic spacer ring embraces the lens. It is glued
to the inner surface of the glass substrate of the upper viewport on one side and to the lens on
the other side. The thickness of the spacer ring determines the vertical position of the lens. It
was chosen such that the distance of the lens to the atoms is 3.7 mm, which corresponds to the
working distance of the imaging system. The spacer ring guarantees that the lens is aligned
parallel to the viewport and thereby reduces aberrations in the imaging system. The lower
viewport is a copy of the upper viewport except that no lens is connected to it.

To generate electric fields within the science chamber, four parallel rod electrodes were
installed inside of it. The rod electrodes are each 66 mm long and 3.15 mm in diameter. Two
home-built holders support the electrodes on both ends and bring them into a rectangular
22× 6 mm configuration parallel to the transportation axis (see Fig. 8.5). The holders are
clamped between groove grabbers9, which fit into internal grooves of the science chamber.
To isolate the electrodes against the groove grabbers, the holders are made out of a machin-
able and low-outgassing glass ceramic called Macor®. Figure 8.6 (a) shows the stainless steel
science chamber during the assembly and illustrates the internal mounting of the electrodes.
Vacuum-compatible Kapton™-insulated copper wires connect the electrodes to the pins of
the electrical feedthrough. To guide the wires through the CF40 cross towards the electrical
feedthrough, four rods that are mounted to a double-sided flange10 between the CF40 cross
and the conical reducer serve as installation aids. Figure 8.6 (b) depicts the double-sided
flange and the fixing of the copper wires to the installation aids. This construction prevents
the wires from blocking the transportation beam, which also would pass through the CF40-to-
CF16 reducer. With the described configuration of the electrodes electric field strengths up to
4.2 kV/cm can be reached as found in a computational simulation. The maximum electric field
strength is limited by the maximum voltage that the electrical feedthrough can handle.

8.2.3. Home-Built Viewports

All viewports of the stainless steel science chamber are home-built. This approach opens up
the perspective to gain knowledge on manufacturing vacuum-compatible viewports for future
applications.

CF16 Viewports
Standard CF16 straight connectors11, consisting of two CF16 flanges and a stainless steel tube
in-between, form the basis for the CF16 viewports. The stainless steel tube of the straight
connectors has an inner diameter of 16 mm and a wall thickness of 1.5 mm. To manufacture
viewports, the CF16 straight connectors were cut into two pieces of equal lengths. Figure
8.7 (a) and (b) show one of the home-built CF16 viewports. Once the connectors were cut
into halves, the machined surface of each half was first flattened and then polished using sand
paper of grain size 600, 800, and finally 1200. Figure 8.7 (c) depicts the polished surface of a cut

9Kimball Physics, MCF450-GrvGrb-C03.
10Kimball Physics, MCF275-ThnFlg-C2-400-ID1500GG.
11Vacom, SC16R-316LNS.
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Figure 8.7.: Home-built CF16 viewports. (a)+(b) The CF16 viewports consist of a flat glass
substrate that is glued on top of a CF16 half nipple. (c) Before making the contact, the metallic
sealing surface is polished with sand paper. During baking, when the glue is still liquid, a
sleeve protects the glass substrate against slipping.

straight connector tube. After checking the polished surface for scratches with a microscope,
a cylindrical glass substrate was contacted to the polished surface with a continuous, thin
layer of the liquid vacuum leak sealant VacSeal. The glass substrates are commercial fused
silica windows12 with a 1-inch diameter, a thickness of 5 mm, and a two-side broadband anti-
reflection coating for wavelengths from 650 nm to 1050 nm. To cure the glue, each viewport
was baked in an oven for several hours. Table 8.1 lists the temperature ramps that were used
for curing. Cooling down of the oven was reached by switching off the oven and waiting
until the heat had dissipated. The oven reached room temperature typically after about ∼10
hours. To verify that the sealing line was gapless and undamaged after the baking process,
the viewports were once more subjected to a visual check with a microscope. In many cases,
the glue migrated during the baking process and left behind sealing lines of reduced width or
some that were clearly flawed. Likewise, undesired bubbles, whose origin remained unclear,
manifested in the sealing of several viewports. In both cases, to avoid potential breaking of
the corrupted sealing and to prevent outgassing of the bubbles, the imperfect viewports were
sorted out.

Commercial anti-reflection coated CF viewports (clear view typically around 16 mm in

12Thorlabs, WG41050-B.

136



8.2. Stainless Steel Science Chamber

Table 8.1.: Temperature ramps for curing the home-built viewports.

Ramp from Ramp to Within

room temperature 60 ◦C 60 min
60 ◦C 60 ◦C 20 min
60 ◦C 80 ◦C 40 min
80 ◦C 80 ◦C 20 min
80 ◦C 100 ◦C 20 min
100 ◦C 100 ◦C 4300 min
100 ◦C room temperature typically 10 h

diameter) suffer from shadowing effects during the coating process. These shadowing effects
rule out having the anti-reflection coating over the full clear view of the viewport. In contrast,
our home-built CF16 viewports have an anti-reflection coated clear view of 16 mm in diameter,
giving us more optical access to the atoms in comparison to commercial CF16 viewports.

CF63 Viewports
The CF63 viewports of the stainless steel science chamber are composed of a CF63 flange onto
which a flat glass substrate is glued. The flange is home-built out of austenitic stainless steel of
grade 1.4435/BN2. Figure 8.8 (a) and (b) show the upper CF63 viewport with the aspheric lens
that is attached to it. The outer diameter of the flange is 113.5 mm and the inwards protrusion
is 11 mm. The glass substrate is of the same type as the ones used for the home-built CF16
viewports. It is glued to the seating of the flange with VacSeal. The 19.4 mm-diameter hole
in the center of the flange determines the clear view of the viewport. To glue the substrate to
the flange, the procedure was similar to the previous description: after polishing and glueing,
the CF63 viewports were finally baked with the temperature ramps given in Table 8.1. On the
vacuum side of the viewport the aspheric lens of the high-resolution imaging system is glued
onto the glass substrate via an aluminum spacer ring. The spacer ring has a venting hole on the
side as pointed out in Fig. 8.8 (a). A technical drawing of the CF63 flange is given in Appendix
D.1.

8.2.4. Assembly of the Stainless Steel Science Chamber Setup

Prior to the assembly of the stainless steel science chamber setup, all stainless steel vacuum
parts were air baked at temperatures between∼300 ◦C and 400 ◦C to form a surface oxide layer
that reduces outgassing of the bulk material. Furthermore, each viewport was helium-leak
tested separately. During the helium leak tests the partial pressure of helium was constantly
in the lower 10−12 mbar range, thus indicating a leak-free sealing.

The construction work of the science chamber setup was characterized by different com-
plications. After having built the entire science chamber setup, leaks were detected at the
viewports several times. Partially, the leaks could be sealed by external application of VacSeal
to the leaks. In other cases, the corrupted viewports were removed and replaced with new
ones. The reasons for the occurence of the leaks remained unclear. At another point, an ion
gauge13 that was temporarily mounted to the bottom of the CF40 cube broke during bakeout

13Agilent Technologies, UHV-24p ion gauge with two tungsten filaments.
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Figure 8.8.: Home-built CF63 viewport. (a) Side view of a CF63 viewport. The viewports are
inverted and have a conical protrusion. (b) At the upper viewport we connected the aspheric
lens of the imaging system to the inner surface of the glass substrate via an aluminum spacer
ring. A hole within the spacer ring allows for venting the cylindrical volume between lens and
glass substrate.
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and required to exchange the ion gauge and repeat the pumping and baking procedure for
another time. Furthermore, presumably inferior copper gaskets demanded to rebuild parts of
the setup. In the course of testing the science chamber setup, the setup was also modified a
few times. In order to achieve a higher pumping speed at the science chamber, for instance,
the formerly mounted CF40-to-CF16 straight connectors were exchanged for conical ones. In
addition, a second home-built TiSub pump (besides the one at the CF40 cube) was added to
the setup at the CF40 cross.

After having baked the latest version of the science chamber (science chamber baked at
120 ◦C and all other components at temperatures between 100 ◦C and 240 ◦C) for six days, a
pressure of 4× 10−10 mbar was achieved, which gradually increased to 1.2× 10−9 mbar. The
pressure was measured with an ion gauge at the CF40 cube and therefore right in the vicinity
of the ion pump and TiSub pump. Given the limited gas flow conductance of the conical CF40-
to-CF16 reducers, the pressure within the stainless steel science chamber was expected to be
higher than the pressure measured by the ion gauge. At about the same time, the experiments
within the main chamber pointed out the magnetization effects associated with stainless steel
chambers. As a consequence, we stopped working on the stainless steel science chamber setup
and focused on a new setup that involves a glass cell.

8.3. Glass Cell Science Chamber

In this Section, the design of the glass cell science chamber setup, its internal mounting con-
struction, and the influence of the atmospheric pressure on the top glass cell window is dis-
cussed.

8.3.1. Overview

The glass cell science chamber setup consists of two units: a glass cell that incorporates the
aspheric lens of the high-resolution imaging system (see Sec. 3.5.3) and an operational unit
that comprises all components for operating the science chamber setup. Figure 8.9 gives an
overview of the glass cell science chamber setup and clarifies the distinction between the glass
cell and the operational unit. The operational unit centers around a CF40 six-way cube14. In
Fig. 8.9, the cube holds the glass cell on its right side and makes the connection to the gate valve
of the main chamber via a stainless steel joint15 of minimal length (close coupler) on its left side.
On top of the cube a CF40 cross16 joins a CF40 angle valve17, an ion pump18, and a commer-
cial TiSub pump19 for creating and maintaining UHV inside of the glass cell setup. Sidewise,
two commercial viewports give optical access to the cube for probing the atoms during their
transport to the glass cell. On the bottom side of the cube a four-pin electrical feedthrough20

facilitates feeding voltages up to ±10 kV into the setup. The overall transportation distance
from the center of the main chamber to the center of the glass cell is 464 mm.

14Kimball Physics, MCF275-SphCube-C6.
15Kimball Physics, MCF275-ClsCplr-C2-1400.
16Vacom, X40R-316LNS.
17VAT, Easy-close all-metal angle valve, CF40, Series 541.
18Agilent Technologies, VacIon Plus 20, StarCell.
19Videko, TSP cartridge with three filaments (product number: 360547).
20Lesker, SHV-10 CF40 electrical feedthrough, IFTVG041053.
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Figure 8.9.: Overview of the glass cell science chamber setup. The glass cell setup centers
around a CF40 cube to which a UHV glass cell is connected. To operate the glass cell setup, a
number of different components are mounted to the cube. These components include an angle
valve, an ion pump, a TiSub pump, viewports, and an electrical feedthrough. A close coupler
on the left side of the cube allows the connection of the entire glass cell setup to the gate valve
of the main chamber. For the test setup of the glass cell, the close coupler was terminated with
a blind flange.
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Figure 8.10.: Conceptual drawing of the glass cell. The glass cell can be divided into three
parts: a CF40 flange, a glass-metal transition, and a glass cell body. The glass cell body consists
of ten individual flat glass substrates that are bonded together. The anti-reflection coating of
the individual substrates are indicated through C1 (anti-reflection coating type 1) and C2 (anti-
reflection coating type 2). Specifications of the coatings are discussed in the main text.

8.3.2. Layout of the Glass Cell Science Chamber

The glass cell is a custom-made UHV cell and was manufactured by Japan Cell. It consists of an
octagonal glass cell body, which connects to a CF40 flange via a glass-metal transition. Figure
8.10 shows a conceptual drawing of the glass cell. The flange is made out of austenitic stainless
steel and rotatable. The glass cell body has an outer width of 75 mm and an outer height of
34 mm. The tubular glass-metal transition matches the thermal expansion coefficients of glass
and stainless steel and thus reduces temperature-induced mechanical stress within the glass
cell during bake out. It was demanded by us to be non-magnetic. The overall length of the
glass cell is 175 mm. A technical drawing of the glass cell is given in Appendix E.1.

The glass cell body is built up of ten individual 5 mm-thick flat fused silica substrates21

that are bonded together to form an octagonal cylinder. The optical flatness of each substrate
was specified to be λ/6 at 632 nm and the parallelism to be smaller than 20′′. Each of the glass
substrates is anti-reflection coated on both sides with one of the following two coating types:

21Japan Cell did not disclose the name of the fused silica type that was used for the glass cell substrates. Instead,
Japan Cell referred to the similarity between the optical properties of the fused silica of the glass substrates and
the originally requested material Corning® HPFS® 7980.
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Figure 8.11.: Internal mounting construction. Several components are mounted within the
glass cell setup. Two electrode holders (dark yellow) support a set of 4 rods (dark blue) and
are mounted within the CF40 cube (not shown here). To minimize mechanical vibrations of the
rods, a sphere holder (red) is positioned at the glass cell body. Furthermore, two lens holders
(green) carry the aspheric lens (purple) within the glass cell.

◦ Coating 1 (C1)
This coating has minimum reflectivity at the imaging wavelengths of K (λK

image = 766 nm)
and Cs (λCs

image = 852 nm) and at 1064 nm for optical dipole traps and optical lattice beams
each for perpendicular incidence.

◦ Coating 2 (C2)
This coating has minimum reflectivity within the wavelength band from 1064 nm to
1500 nm. It is mainly designed for transmitting the transportation beam and for laser
beams that drive molecular transitions.

Figure 8.10 clarifies which coating type is applied to which glass substrate. The calculated
reflectivity charts of the anti-reflection coatings, which were provided by Japan Cell, are shown
in Appendix F.1 and Appendix F.2. The fused silica substrates of the glass cell are bonded
together using epoxy glue EPO-TEK 353ND-T. Our preferred choice of bonding for the glass
cell was optical contact bonding, which forms a vacuum-tight bond. Glass cells for ultra-high
vacuum applications with two-sided anti-reflection coatings that are bonded by optical contact
have become available only lately [Bra15].

The wall thickness of the glass tube at the glass-metal transition is about 1.5 mm. To
guarantee that the aspheric lens fits through the glass-metal transition, the clear view of the
glass-metal transition was specified to be 19 mm+0.500mm

−0mm . The aspheric lens was coated by
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Figure 8.12.: Titanium rod. The titanium rods have a profile with regions of different diame-
ters. On the left end, the rods have an internal M1 thread.

Lens-Optics. The anti-reflection coating of the aspheric lens has the following theoretical spec-
ifications:

◦ Coating on the plane lens surface

− reflectivity at 1064 nm larger than 99.9 % for perpendicular incidence

− transmission at 766 nm and 852 nm larger than 95 % for angles of incidence between
0− 45°

◦ Coating on the convex lens surface

− transmission at 766 nm and 852 nm larger than 99.5 % within a radius of 4 mm around
the optical axis of the lens

− transmission at 766 nm and 852 nm larger than 98.5 % outside of that radius

8.3.3. Internal Mounting Construction

While the outer design of the glass cell setup is rather straightforward, the internal design
is more involved. The lens within the glass cell is centered 3.7 mm above the midpoint of
the glass cell to which the atoms from the main chamber will be transported. This distance
corresponds to the working distance of the imaging system (see Sec. 3.5.3). The lens rests on
two holders, which are called lens holders. Figure 8.11 shows the internal mounting of the glass
cell including the lens and lens holders. The lens holders are held in place by four identical
rods (marked dark blue in Fig. 8.11), which extend into the glass cell body. For mounting the
rods and carrying the weight of the lens, two additional holders (marked dark yellow in Fig.
8.11) are installed inside of the CF40 cube. These two holders are simultaneously used to align
the lens relative to the glass cell and are called electrode holders. Another holder (marked red
in Fig. 8.11) is positioned right at the transition from the glass cell body to the glass-metal
transition. It mechanically fixes the rods and thereby minimizes potential vibrations of the
lens. The latter holder is denoted as sphere holder.

Rods
The rods are custom-made and machined out of titanium grade 2 (material number 3.7035).
Titanium is used in order to avoid stainless steel nearby the atoms and thus magnetization
effects as they occured at the main chamber. Even though titanium is considered to be non-
magnetic, it has a finite relative magnetic permeability. Pure titanium has a relative magnetic
permeability of µr = 1.00005 [Boy94], which is a factor of 100 smaller than the relative magnetic
permeability of the stainless steel material of our main chamber (see Sec. 6.3.1).

The rods have an overall length of 202 mm and a diameter that varies stepwise between
2 mm and 3 mm. Figure 8.12 shows a schematic drawing of one of the titanium rods. The radial
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Figure 8.13.: Lens holders. (a) The aspheric lens rests on two identical lens holders that are
carried by four titanium rods. To position the lens, the holders have a circular seat with a
hollow. Horizontal laser beams (red, blue, and orange arrows) can be directed towards the
atoms through each window of the glass cell. (b) The holders define the distance between the
atoms and the lens.

steps serve as position markers for accurate placement of the lens holders, sphere holder, and
electrode holders and thereby ensure that the lens is correctly positioned within the glass cell.
To prevent transfer of stress to the sensitive glass-metal transition during mounting of the
glass cell, the rods are straightened to within 0.1 mm over their entire length. The surface of
the titanium rods is of Rz = 4 quality, corresponding to an averaged peak-to-peak surface
roughness of 4 µm. It is the best surface finishing that could be obtained for these rods. The
rods have an internal M1 x 0.25 thread on one end. A technical drawing of the titanium rods
is shown in Appendix E.2.

The small ratio of rod radius to rod length was a knock-out criterion for many manu-
facturers. In addition, the requirements on concentricity, run-out, and surface finishing made
the search for a possible manufacturer quite difficult. After a time consuming search, luck-
ily a company22 was found that has the technical equipment and knowledge to manufacture
titanium rods with the required specifications.

Lens Holders
Two identical, home-built lens holders are slipped over the titanium rods and accept the as-
pheric lens. The lens holders have four parallel holes to fix the relative positions of the rods
and thereby bring them into a rectangular configuration of 10× 5 mm. A circular recession on
top of the holders creates a seating for the lens. Figure 8.13 (a) and (b) illustrate the affixing of
the lens holders and the seating of the aspheric lens. To minimize the risk of virtual leaks, the
recession has a hollow and its edge is chamfered. Three horizontal holes in each lens holder
make it possible to send laser beams through each glass cell window to the atoms. The cen-
tral hole has a diameter of 5 mm and creates a pathway for the transportation beam (orange
arrow in Fig. 8.13 (a)). Another two holes with 4.5 mm diameter allow for generation of opti-

22August Müller CNC-Zerspanungstechnik, Uelzen (Germany).
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Figure 8.14.: Electrode holders. (a) A pair of groove grabbers (orange) is installed to the glass
cell port of the CF40 cube and carries a construction of two electrode holders (dark yellow) and
four threaded rods (purple). The electrode holders are fixed by locking nuts and hold the four
titanium rods (gray). To secure the rods against slipping, four M2 screws are used. (b) Copper
wires establish electrical contact between the electrodes and the electrical feedthrough.

cal lattices with laser beams (red arrows) at angles of ±45° relative to the transportation axis.
Supplementary imaging of the atoms, if needed, can be performed perpendicular to the trans-
portation axis (blue arrow). As the lens holders are located within a UHV environment, their
material has to be vacuum compatible. Thus, the holders were manufactured out of Macor®.
Macor® is bakeable, remains mechanically stable at temperatures of up to 800 ◦C, and is an
electric insulator [Corb]. To fix the lens to the lens holders, a tiny amount of VacSeal was used
for the sake of safety. A technical drawing of the lens holders is given in Appendix E.3.

Electrode Holders
Two home-built electrode holders made out of Macor® support the titanium rods within the
CF40 cube. Figure 8.14 (a) and (b) show the electrode holders and the surrounding construc-
tion that holds them. The electrode holders are oriented parallel to each other and are lined
up on four threaded stainless steel rods23. The threaded rods themselves are bolted to a pair
of groove grabbers24 that are mounted to internal grooves of the CF40 cube. The electrode
holders absorb the torque that originates from the weight of the titanium rods and the lens.
The electrode holders are fixed in longitudinal position by a set of locking nuts. To mount the
titanium rods to the electrode holders, the titanium rods were pushed through four, parallel

23Kimball Physics, SS-TR-4-40-12000.
24Kimball Physics, MCF275-GrvGrb-C01.
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Figure 8.15.: Internal fitting. (a) Glass cell port of the CF40 cube with mounted groove grab-
bers and electrode holders. (b) Top view of the CF40 cube. The rear electrode holder and
the threaded rods become visible. (c) Rear electrode holder with inserted titanium rods. (d)
Flattened copper wires are screwed to the titanium rods. All images were taken during the
assembly of the internal mounting construction.

holes in the electrode holders. Unwanted sliding of the titanium rods is inhibited by four M2
titanium grade 2 set screws25 that are screwed laterally into the left electrode holder in Fig.
8.14 and jam the titanium rods.

By applying voltages to the titanium rods, the rods can be used as rod electrodes to gener-
ate electric fields within the glass cell. To that end, the titanium rods were connected individ-
ually to the pins of the electrical feedthrough with 1 mm thick vacuum-compatible Kapton™-
insulated copper wires26. On one end of each wire, the insulation was first stripped off and
then the end of the blank wire was pressed flat. After this, a hole was drilled in the flattened
copper disk. Finally, copper was filed off from the disk until a round eyelet was left. To mount
these ends of the copper wires to the internal threads of the titanium rods, titanium grade 2
screws27 were utilized. The screws jam the copper eyes between the electrode holder and the
screw heads. The inset of Fig. 8.14 (b) shows a section view of a titanium rod and illustrates
the mounting of the titanium rods and the copper wires to the electrode holder. The untreated
ends of the copper wires were screwed to set screw connectors28 at the electrical feedthrough.
Figure 8.15 (a)-(d) show the CF40 cube of the glass cell science chamber setup during the as-

25DIN 551 set screws.
26Lesker, FTAK10010.
27DIN 84 screw.
28Lesker, FTASSC050.
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Figure 8.16.: Sphere holder. (a) The sphere holder seen from the main chamber. (b) Sectional
side view. As one turns an M2 set screw into the sphere holder, the sapphire sphere moves
upwards. (c) The sphere holder mounted to a dummy quartz glass ring for testing.

sembly of the internal mounting construction and demonstrate the mounting of the electrode
holders and the realization of the wire connections. A technical drawing of the electrode hold-
ers is shown in Appendix E.4.

Sphere Holder
The sphere holder is a home-built part that stabilizes the titanium rods against vibrations and
additionally sets the correct position of the aspheric lens. It is made out of Macor®. Figure
8.16 (a) shows a rear view of the sphere holder and illustrates its annular shape. Two rigid
legs stick out from the lower half of the sphere holder. The upper half of the sphere holder
contains a 4 mm-diameter sapphire sphere, which resides entirely within the sphere holder
in unmounted position. When the sphere holder is mounted within the glass cell, the two
legs rest on the inner wall of the clearance hole of the glass cell body. Their length is chosen
such that in this position the aspheric lens is placed 3.7 mm above the glass cell center. By
screwing an M2 titanium grade 2 set screw29 with a tapered nose into the sphere holder one
pushes the sapphire sphere outwards and clamps the sphere holder to the glass cell. Figure
8.16 (b) explains how the set screw pushes the sphere outwards. The two legs together with
the sapphire sphere thus form a manual 3-point clamping mechanism. Figure 8.16 (c) shows
the sphere holder when clamped to a dummy quartz glass ring. A technical drawing of the
sphere holder is shown in Appendix E.5.

8.3.4. Influence of Atmospheric Pressure

Under the influence of the atmospheric pressure the glass windows of the glass cell will
bend inwards. To check whether this bending is troublesome to the performance of the high-
resolution imaging system, a finite element simulation of the expected deformation is per-
formed. The simulation is carried out with the software SOLIDWORKS by using a static de-
formation analysis of a 3D computer-aided design (CAD) model of the glass cell. All glass

29DIN 553 set screw.
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Figure 8.17.: Bending of the top glass cell window. (a) Surface plot of the vertical deformation
of the top glass cell window. (b) Numerical results of the vertical deformation of the top glass
cell window along the x−direction (black, solid line) and y−direction (red, dashed line).

parts are assigned to have material properties of the fused silica grade30 Corning® HPFS®

7980. Furthermore, a pressure of 1× 105 N/m2 acting on all surfaces of the glass cell model is
assumed. To resolve the bending of the glass window, the mesh applied to the model has a
maximum element size of 0.92 mm, which is much smaller than the width of the glass cell. The
minimum mesh element size is 0.05 mm.

Figure 8.17 (a) shows a surface plot of the numerical results for the deformation of the top
glass window along the vertical z−direction. The deformation is nearly radially symmetric
around the center of the glass window. The simulated vertical deformation is assessed along
the x− and y− directions, which are defined in Fig. 8.17 (a). Figure 8.17 (b) shows the obtained
vertical displacement curves along the x− and y− directions. The vertical displacement is
maximum (−4.9 µm) at x = y = 0 and decreases towards the walls of the glass cell as expected.
While the vertical deformation is symmetric along the y−direction, it is asymmetric for the
x−axis. This asymmetry is presumably due to the fact that the glass cell design is asymmetric
with a glass-metal transition on the left side and a simple glass substrate on the right side in
Fig. 8.17 (a).

For the performance of the imaging system, only the variation in vertical deformation
over an aperture of about 5 mm radius around the center of the glass window is relevant. The
change in vertical deformation over that region is determined to be approximately ∼160 nm.
A simulation of the optical performance of the imaging system with a bent glass cell window
as that discussed here was performed by E. Kirilov, who designed the imaging system, using
the software Zemax. The simulation yielded no impairment of the optical performance by the
cell window.

8.3.5. Assembly of the Glass Cell Science Chamber Setup

Before the glass cell setup was assembled, the clamping mechanism of the sphere holder was
tested. The two materials Macor® and fused silica have unequal coefficients of thermal ex-

30See footnote 21.
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Figure 8.18.: Alignment of glass cell and lens. (a) By measuring the distance between the
table and the glass cell it was verified that the glass cell is aligned horizontally. (b) A laser
beam from a helium-neon laser was guided to the plane surface of the lens. Using a 50/50-
beam splitter, two back reflections of the lens and the bottom glass cell window were observed
on a distant screen. If the rear electrode holder were tilted, the lens would move up or down.
The alignment procedure is described in the main text.

pansion, which differ in magnitude by a factor of 16.31 For this reason, it was verified that
the clamped sphere holder inside the glass cell will withstand the bake out and will not in-
duce tensions that potentially could crack the glass cell. To that end, the bake-out process was
imitated by baking a duplicate of the sphere holder that had been mounted inside a dummy
quartz glass ring at a temperature of 100 ◦C for ten hours as shown in Fig. 8.16 (c). No damages
were observed of both parts after cooling down. It was therefore concluded that the bake out
will not damage the glass cell owing to the clamped sphere holder.

Once the entire internal mounting structure had been installed to the CF40 cube, the fol-
lowing iterative aligning procedure was pursued to align the aspheric lens and the glass cell
relative to each other.

1. Rotational alignment of the glass cell. The glass cell was loosely connected to the CF40
cube and rotated until it was aligned horizontally. To validate the horizontal alignment of
the cell, the height of the bottom glass substrate relative to the table surface on which the
setup had been mounted was measured on two opposing sides. Figure 8.18 (a) illustrates
the approach for rotational alignment.

2. Rotational alignment of the aspheric lens. After the glass cell had been aligned rota-
tionally, the horizontal glass cell was taken as reference for the alignment of the lens. To
align the lens, a laser beam from a helium-neon laser was reflected from the plane sur-
face of the lens. Two back reflections were observed on a distant screen. Figure 8.18 (b)

31For Macor® the coefficient of thermal expansion is 9× 10−6 /K within a temperature range between 25 ◦C and
300 ◦C [Corb]. The coefficient of thermal expansion for the fused silica of the glass cell was assumed to be similar
to that of Corning® HPFS® 7980 (see also footnote 21), which is 0.57× 10−6 /K for temperatures between 0 ◦C
and 200 ◦C [Cora].
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shows the laser setup that was used for alignment of the lens. One back reflection came
from the flat side of the lens and the other one from the bottom window of the glass cell.
By means of the two reflections, it could be checked whether lens and glass cell were
rotationally parallel to each other. When the lens was parallel to the glass cell, the two
back reflections overlapped. If lens and cell were rotationally tilted relative to each other,
the glass cell needed to be removed and the groove grabbers must be rotated. Thereafter
step 1 and 2 of this procedure must be repeated.

3. Longitudinal alignment of the aspheric lens. Once the lens was aligned rotationally to
be horizontal, the sphere holder was pushed to its intended position and clamped to the
glass cell. It was then necessary to test whether the asphere was parallel to the glass cell
along the transportation axis. At the beginning of the alignment, tightening the sphere
holder often bent the titanium rods due to longitudinal misalignment. Thus, the laser
back reflections started moving relative to each other. Longitudinal misalignment had
different origins. First, because of the clearance of the glass cell flange, the glass cell was
sometimes mounted too high (too low) or too much to the left (or right) side. Second,
the electrodes were initially not horizontal. To align the lens longitudinally, the glass cell
was repositioned. Alternatively, the electrodes were tilted by tilting the rear electrode
holder. The latter option is indicated through blue arrows in Fig. 8.18 (b).

4. Tightening the glass cell flange. Next, the sphere holder was loosened and the glass cell
flange was tightened to the CF40 cube in incremental steps. The tightening inclined the
glass cell a bit probably due to asymmetric tightening of the screws. Therefore, the lens
needed to be realigned relative to the glass cell. The realignment was achieved by tilting
the electrode holders and checking the overlap of the back reflections.

5. Completing the setup. Once the glass cell flange was fully tightened, all Macor® holders
were fixed, the copper wires were connected to the titanium rods, and all remaining
vacuum parts32 were mounted to the CF40 cube.

In the final glass cell setup the glass cell is found to be aligned horizontally to around
∼0.08°. A residual tilt between the aspheric lens and the glass cell was found and measured to
be 0.16(4)° via the laser back reflections. This tilt is smaller than the maximum tilt of ∼ 1° that
the high-resolution imaging system can compensate [Kir].

After having assembled the glass cell setup, the entire setup was baked out. In order
to achieve a homogeneous temperature distribution across the glass cell, a closed box out of
copper sheets was built around the glass cell. The entire glass cell setup was then wrapped
with heating wires and coated with several layers of aluminum foil. The maximum bake-out
temperature of the glass cell is specified by the manufacturer to be 120 ◦C. During the bake out
the temperature of the copper box was therefore kept at about 105 ◦C while the temperature of
the stainless steel vacuum parts was between 100 ◦C and 200 ◦C. The setup was baked out for
19 days.

To be able to determine the pressure within the glass cell setup, an ion gauge33 was ini-
tially installed to the setup. The ion gauge was mounted within a horizontal CF40 nipple to
the CF40 cube right opposite of the glass cell. The ion gauge at that position read a pressure
within the low 10−10 mbar after bake out. This pressure is higher than the originally intended

32All stainless steel parts used in the glass cell science chamber setup were air baked at 400 ◦C for 24 hours prior
to the assembly.

33Agilent Technologies, UHV-24p ion gauge.

150



8.3. Glass Cell Science Chamber

Figure 8.19.: Top view of the glass cell science chamber. The picture shows the fully as-
sembled and evacuated glass cell. The aspheric lens as well as the lens holders and the rod
electrodes are clearly visible. After the bake out of the glass cell the glue of the glass substrates
had changed its color into reddish.

pressure (see Sec. 8.1.1). The ion gauge heats up during operation and therefore causes en-
hanced outgassing from its filament as well as surrounding vacuum parts (e.g. the CF40 full
nipple). Since the aperture of the CF40 nipple was largely blocked by the nearby electrode
holder, the high pressure displayed by the ion gauge was explained with a reduced pump-
ing speed within the full nipple. It is expected that lifetime measurements of trapped atoms
in future experiments will confirm a lower pressure within the glass cell than that originally
measured by the ion gauge.

The glass cell setup (without the ion gauge) was successfully attached to the main vacuum
system during this Thesis and is ready for operation. Figure 8.19 shows a close-up of the
evacuated, final glass cell setup with the mounted aspheric lens.
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9. Calculation of Electric Dipole
Moments, Electric Fields, and
Dipolar Spin Exchange

In future experiments the titanium rod electrodes within the glass cell science chamber will
be used to generate electric fields and thereby polarize KCs molecules. Polarized molecules
possess an induced electric dipole moment that depends on the strength of the external elec-
tric field. In this Chapter, the induced electric dipole moment of bosonic 39KCs ground-state
molecules is computed for different molecular states and as a function of the external electric
field strength. Furthermore, different electric field configurations that can be generated by the
titanium electrodes are simulated. The resulting electric field distributions are numerically
analyzed and their field homogeneity is quantified. Finally, the results of the electric dipole
moment calculations and the electric field simulations are combined to study the influence of
residual electric field inhomogeneities on future experiments within the K−Cs apparatus. This
analysis is done with respect to the experimental realization of the spin−1/2 Heisenberg XXZ
lattice model with 39KCs molecules on a 2D square lattice. The numerical results show that
the electric field within the glass cell science chamber is homogeneous enough to study this
particular spin lattice model with 39KCs molecules.

9.1. Calculation of Electric Dipole Moments of 39KCs Molecules

In heteronuclear molecules, the difference in electronegativity of the individual atoms causes
the atoms to share electrons unequally. For diatomic, heteronuclear molecules, the charge
separation that occurs due to this imbalance leads to a permanent electric dipole moment
(pEDM) [Atk17]. The pEDM ~pperm within the body-fixed frame of these molecules points along
the internuclear axis [Boh09]. It vanishes within the lab frame, however, in the absence of an
external electric field [Car09]. To induce an electric dipole moment ~p within the lab frame, the
molecules can be polarized by an external electric field ~F .

In this Section, the induced electric dipole moment p = |~p| of 39KCs molecules is calcu-
lated as a function of the strength F of an external electric field ~F . The induced electric dipole
moment p is calculated for those molecular states that will be relevant for future experiments.
This Section therefore focuses on the induced electric dipole moment p of the energetically low-
est lying rotational states of the electronic and vibrational ground state of 39KCs molecules.

Due to the nuclear spin of 39K (I = 3/2 [Ari77]) and 133Cs (I = 7/2 [Ari77]), the individ-
ual nuclear spin magnetic moments within a 39KCs molecule interact with each other [Bro03].
Furthermore, the electric quadrupole moments of the 39K and 133Cs nuclei interact with the
gradient of the local electric field that is generated by the electrons and the respective other
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Figure 9.1.: Rotational states of a diatomic molecule. (a) The rotational states |Jrot,Mrot〉 for
the lowest (Jrot = 0) and first excited (Jrot = 1) rotational level of a diatomic molecule are
shown. The (2Jrot+1) states of each rotational level are degenerate in the absence of an external
electric field. (b) In the presence of an external electric field, the degeneracy is partially lifted.
Only states with the same absolute value of Mrot for each J̃rot remain degenerate.

nucleus within the molecule.1 Both interactions lead to a hyperfine splitting within the rota-
tional levels of 39KCs molecules [Bro03]. For reasons of simplification, the hyperfine structure
is neglected in the following.

9.1.1. Rotating Diatomic Molecules

A diatomic molecule in its electronic and vibrational ground state can be described as a (linear)
rigid rotor with Hamilton operator [Bro03]

Ĥrot = hcBrotĴ
2, (9.1)

where Ĵ is the angular momentum operator in units of ~ and Brot is the rotational constant of the
molecule given by [Hak06]

Brot =
h

8π2 · c · Ξ
. (9.2)

The rotational constant Brot is inversely proportional to the molecule’s moment of inertia Ξ =
mrR

2
eq, where mr is the reduced mass and Req is the equilibrium internuclear distance [Hak06].

It thus depends on the molecule itself as well as on the electronic and vibrational state. The
eigenstates of the Hamiltonian Ĥrot are the angular momentum eigenstates |Jrot,Mrot〉with ro-
tational angular momentum quantum number Jrot and the projection Mrot of the angular momen-
tum on an externally defined direction, which can be for instance the direction of an applied
electric field. As usual, the relation−Jrot ≤Mrot ≤ +Jrot restricts the values of Mrot. The states

1Numerical values for the nuclear electric quadrupole moments of 39K and 133Cs can be found in the compilation
of Ref. [Pyy18].
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|Jrot,Mrot〉 have eigenenergies EJrot,Mrot with [Bro03]

EJrot,Mrot = hcBrotJrot (Jrot + 1) . (9.3)

Each rotational level is thus (2Jrot + 1)−fold degenerate and successive rotational levels with
quantum numbers Jrot and J ′rot = Jrot + 1 have an increasing energy spacing of EJ ′rot,M

′
rot
−

EJrot,Mrot = 2hcBrot(Jrot + 1). Figure 9.1 (a) illustrates the eigenenergies of the ground (Jrot = 0)
and first excited (Jrot = 1) rotational level of a rotating diatomic molecule.

9.1.2. Rotating Diatomic Molecules in Electric Fields

A diatomic, heteronuclear molecule in a rotational state |Jrot,Mrot〉 has a well-defined par-
ity, i.e. a transformation between two coordinate systems (x, y, z) and (−x,−y,−z) leaves the
molecular wavefunction either unchanged or alters its sign. Rotational states with odd or even
quantum number Jrot have opposite parity [Hak06]. In the absence of electric fields, a molecule
in state |Jrot,Mrot〉 thus does not possess a pEDM ~pperm in the lab frame.

The Hamiltonian for a rotating, diatomic polar molecule in its electronic and vibrational
ground state within an external electric field ~F = F ~E reads [Boh09]

Ĥrot,Stark = Ĥrot − p̂ · F ~E . (9.4)

The matrix elements of the Hamiltonian Ĥrot,Stark are given through

〈J ′rot,M
′
rot|Ĥrot,Stark|Jrot,Mrot〉 = hcBrotJrot(Jrot+1)δJrot,J ′rot

δMrot,M ′rot
−F 〈J ′rot,M

′
rot|p̂~E|Jrot,Mrot〉.

(9.5)

By expressing the polarization vector ~E and the electric dipole moment operator p̂ in terms
of spherical polarization vectors ~uξ (as defined in Sec. 5.3.3) and spherical components p̂ξ,
respectively, with [Wal15]

p̂±1 = ∓ p̂x ± ip̂y√
2

, (9.6)

p̂0 = p̂z, (9.7)

the last term in Eq. (9.5) can be rewritten as

−F 〈J ′rot,M
′
rot|p̂~E|Jrot,Mrot〉 = −F

∑
ξ

〈J ′rot,M
′
rot|p̂ξ|Jrot,Mrot〉. (9.8)

In the special case of a molecular state with zero electronic orbital angular momentum, denoted
as Σ state, the matrix element 〈J ′rot,M

′
rot|p̂ξ|Jrot,Mrot〉 can be expressed as [Boh09, Wal15]

〈J ′rot,M
′
rot|p̂ξ|Jrot,Mrot〉 =pperm(−1)M

′
rot

√
(2J ′rot + 1)(2Jrot + 1)

×
(

J ′rot 1 Jrot
−M ′rot ξ Mrot

)(
J ′rot 1 Jrot
0 0 0

)
. (9.9)
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p0̃,0

p1̃,±1

p1̃,0

p↓↑̃

p↓↑

Figure 9.2.: Dipole moments of the 39KCs molecule. Induced electric dipole moments p0̃,0,
p1̃,0, and p1̃,±1 as a function of electric field strength F . For zero electric field, the induced
dipole moments vanish. The horizontal, dashed line indicates the permanent electric dipole
moment pperm = 1.92 D for the electronic-vibrational ground state of 39KCs. The transition
dipole moments p↓↑ and p↓↑̃ are maximum for zero electric field and decrease monotonously
with increasing electric field (see discussion in Sec. 9.3.1). Values for the (transition) dipole
moments were calculated by considering the 26 lowest rotational levels.

The factor pperm in Eq. (9.9) is the absolute value of the pEDM of the molecule, i.e. pperm =
|~pperm|. The first Wigner 3J-symbol in Eq. (9.9) can take non-zero values only if the entries of its
lower row add up to zero [Mes65b]. A linearly polarized electric field (ξ = 0) thus only couples
rotational states with Mrot = M ′rot. Selection rules for the top row entries of the second Wigner
3J-symbol restrict coupling of rotational states to those with opposite parity, i.e. J ′rot = Jrot ± 1
[Mes65b].

Diagonalization of the Hamiltonian Ĥrot,Stark in Eq. (9.4) leads to the eigenstates, denoted
as |J̃rot,Mrot〉, and eigenenergies EJ̃rot,Mrot

of the molecule within an electric field. For a static
electric field in z−direction, the states |J̃rot,Mrot〉 are coherent linear superpositions of the field-
free states |Jrot,Mrot〉with [Lem13]

|J̃rot,Mrot〉 =
∑
Jrot

aJ̃rot,Mrot
Jrot

|Jrot,Mrot〉. (9.10)

The coefficients aJ̃rot,Mrot
Jrot

, and therefore mixing of the rotational states, depend on the elec-

tric field strength F , i.e. aJ̃rot,Mrot
Jrot

= aJ̃rot,Mrot
Jrot

(F ). For F → 0, the state |J̃rot,Mrot〉 converts
adiabatically into the field-free rotational state |Jrot,Mrot〉 [Lem13]. Since the coupling of the
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molecule to the electric field ~F in Eq. (9.9) depends onMrot, the states |J̃rot,−Jrot〉, |J̃rot,−Jrot +
1〉, . . . , |J̃rot,+Jrot〉 that originate from the same rotational level are not degenerate. Only states
with the same absolute value |Mrot| remain degenerate.2 Figure 9.1 (b) depicts the eigenen-
ergies EJ̃rot,Mrot

of the states |0̃, 0〉 and |1̃,Mrot〉. The eigenenergies EJ̃rot,Mrot
vary with field

strength F . The induced electric dipole moment pJ̃rot,Mrot
of a molecule in state |J̃rot,Mrot〉

at field strength F can be deduced from the derivative of the eigenenergy EJ̃rot,Mrot
through

[Cov18]

pJ̃rot,Mrot
(F ) = −

∂EJ̃rot,Mrot
(F )

∂F
. (9.11)

The induced electric dipole moment ~pJ̃rot,Mrot
of a diatomic molecule is aligned along its molec-

ular axis [Boh09].

9.1.3. Calculation of Induced Electric Dipole Moments for 39KCs Molecules

The electronic ground state of a 39KCs molecule is a singlet state, denoted as X1Σ+ [Fer08].3

For a 39KCs molecule in its vibrational ground state of the electronic ground state X1Σ+, the
pEDM is pperm = 1.92 D [Aym05] and the rotational constant Brot takes the value Brot =
3.048(5) m−1 ≡ 0.030 48(5) cm−1 [Fer08].4 If hyperfine interaction is neglected, the energy
splitting of the ground and first excited rotational level for a 39KCs molecule in its electronic-
vibrational ground state can be computed with Eq. (9.3). The splitting amounts to an energy
of h × 1.828 GHz.

To calculate the induced electric dipole moment pJ̃rot,Mrot
of states |J̃rot,Mrot〉 for 39KCs

molecules in their electronic and vibrational ground state, first the corresponding eigenvalue
problem of the Hamiltonian Ĥrot,Stark in Eq. (9.4) was numerically solved. Thereafter the
derivative in Eq. (9.11) was calculated for the obtained sets of eigenenergies. The induced
electric dipole moment pJ̃rot,Mrot

was calculated for the states |J̃rot = 0,Mrot = 0〉, |1̃, 0〉, and
|1̃,±1〉 for electric field strengths F up to 20 kV/cm.

Figure 9.2 presents the numerical values for the induced dipole moments p0̃,0, p1̃,0, and
p1̃,±1. For increasing field strength F , p0̃,0 and p1̃,0 approach the maximum value pperm, which
is indicated through a horizontal, dashed line in Fig. 9.2. The induced electric dipole moment
of state |0̃, 0〉 equals p0̃,0 = 1 D at a field strength of F ≈ 2.2 kV/cm. For the same field strength,
the induced dipole moment of state |1̃, 0〉 is p1̃,0 = −0.38 D. State |1̃, 0〉 reaches an induced
electric dipole moment of 1 D at a field strength of F ≈ 18.8 kV/cm. The induced dipole
moments p1̃,±1 equal 1 D at a field strength of F ≈ 8.1 kV/cm.

9.2. Simulation of Electric Fields

In order to perform electric field simulations for the rod electrodes within the glass cell science
chamber, the software COMSOL Multiphysics was used. This software solves Gauss’ Law and

2Hyperfine interaction breaks the degeneracy of states with the same value of |Mrot| within a rotational level
[Wal15].

3In this notation, X marks the electronic ground state of the molecule and the superscript 1 indicates that the
molecular state is a singlet state. The label + states that the total molecular wavefunction is symmetric under
reflection on an arbitrary plane that includes the molecular axis [Hak06].

4The electric dipole moment of polar molecules is commonly given in units of Debye (D). In SI units, an electric
dipole moment of 1 D is equivalent to ≈3.336× 10−30 C m [Yan13].
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Figure 9.3.: Arrangement of the electrodes. The electrodes are labeled with index i ∈
{1, 2, 3, 4}. The origin of the local coordinate system (x, y, z) coincides with the position of
the molecules. The x−axis lies on the transportation axis.

uses the scalar electric potential as dependent variable [COM]. It utilizes an iterative algo-
rithm, which stops as soon as the numerical solution has converged. The numerical conver-
gence criterion is fulfilled if the relative difference in the solutions of two consecutive iteration
steps is smaller than a predefined value. Due to limited computational power, the numerical
convergence criterion for the present simulations was set to 0.1 %. The electric field simu-
lations were performed for two specific combinations of voltages applied to the electrodes,
which resulted in different electric fields.

9.2.1. Setting up the Simulation

For an unambiguous voltage assignment to the electrodes, the electrodes are labeled with an
index i ∈ {1, 2, 3, 4}. Figure 9.3 shows the arrangement of the electrodes within the glass cell
science chamber and the allocation of the index i. Since the resulting electric field is linear
in the applied voltages, the simulations are performed for voltages Vi of ± 1 V for reasons of
better scaling. Figure 9.3 also introduces a local coordinate system (x, y, z) for the following
discussion of the simulation results. To obtain reliable simulation results for the electric field
distributions, the following procedure is applied:

1. Simplifying the geometry. The arrangement of the electrodes in Fig. 9.3 has two sym-
metry planes, namely the xy−plane and the xz−plane. The two symmetry planes split
the geometry into four quadrants. Each quadrant contains a single rod electrode. The
electric fields that are considered in this Thesis derive from electric potentials that are
antisymmetric to the xz− or xy−plane. In other words, the voltage assignments are of
the kind V1,2 = −V3,4 and V1,4 = −V2,3. The (anti-)symmetry planes can be exploited to
reduce the computational effort of the simulation. To be more precise, the total electric
field of the four rod electrodes can be determined by first solving for the electric field of
a single electrode within a single quadrant. The results of that quadrant are thereafter
projected onto the other quadrants in consideration of the symmetric and antisymmetric
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(a) (b)computational domain rod electrode

inner domain
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Figure 9.4.: Domains of the electric field simulation. (a) The computational domain (green
box) of the electric field simulations includes a single electrode (blue). (b) To allow for a higher
spatial resolution of the simulated electric field around the position of the molecules, a square
box (red; inner domain) along the transportation axis (x−axis) is defined.

transformation. To that end, the simulation makes use of a 3D CAD geometry of a single
rod electrode i. In this way, the model size of the simulation is reduced to a quarter of
the full geometry, allowing for a finer mesh.

2. Defining the computational domain. The domain within which the electric potential
and thus the electric field is calculated (computational domain) is defined by a box that
encloses the entire electrode. Figure 9.4 (a) portrays the computational domain together
with the electrode in it. To implement the field boundary conditions at infinite distance to
the simulation, the left, upper, front, and rear boundaries of the computational domain in
Fig. 9.4 (a) are set to ground. The boundary conditions of the right and lower boundaries
(corresponding to the xy− and xz−plane) take into account the respective symmetry
or antisymmetry of the simulated electric potential. The material of the computational
domain is set to air, which has the same properties that are relevant for the electric field
simulation than vacuum. The boundary surface of the electrode is set to be at a potential
Vi relative to ground.

3. Meshing. For capturing the physics in the simulation, the computational domain is di-
vided into three sub-domains. Each sub-domain has a mesh of different element size. A
square channel (cross-section 2.5× 2.5 mm) along the x−axis is defined to have a rather
small element size. The volume of this channel is denoted as inner domain. The inner do-
main allows a higher spatial resolution for the simulation around the center of the glass
cell where the molecules will be investigated and along the x−axis. Figure 9.4 (b) clarifies
the dimensions and the relative position of the inner domain within the computational
domain. To resolve the surface curvature of the rod electrode, the mesh of the rod is set
to have an element size that is smaller than the radius of the electrode. The remaining
volume of the computational domain is meshed rather coarsely.
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Figure 9.5.: Electric field distribution of simulation 1 (horizontal electric field). Electric field
strength plots for the (a) xy−plane, (b) xz−plane, and (c) yz−plane. The black arrows and the
black circle at the origins of the plots indicate the direction of the local electric field.
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4. Limiting the influence of the computational domain boundaries. The dimensions of
the computational domain (length, width, height) are swept individually from small to
large and each time the electric field simulation is repeated. When the relative difference
in electric field strength at the position of the molecules of two consecutive simulations
becomes less than 1 %, the respective dimension of the computational domain is noted
and used for all of the following simulations. The value of 1 % is chosen because of
limited computational power.

5. Analyzing the model convergence. The element sizes of all three mesh domains are
scanned independently from each other towards smaller values and each time the simu-
lation is repeated. After every simulation run it is checked by how much the electric field
strength has changed. If the relative difference in electric field strength at the position of
the molecules of two consecutive simulations comes below 1 %, the respective mesh size
is used for all following simulations. If the relative difference is larger than 1 %, the elec-
tric field simulation would be regarded as mesh dependent. The value of 1 % is chosen
with respect to limited computational power.
The final element size of the inner domain determined in this way is smaller than 400 µm,
for the electrode it is comparable to that of the inner domain, and the element size of the
remaining volume of the computational domain is smaller than 2 mm. Given the residual
influence of the boundaries and the meshing on the simulation results, a total systematic
error of ±2 % is assumed for the numerical results of the electric field simulations.

9.2.2. Horizontal Electric Field (Simulation 1)

The first electric field simulation treats the case of a voltage assignment to the electrodes ac-
cording to V1,2 = −1 V and V3,4 = +1 V. For this voltage configuration, the electric field vector
~F at the origin of the local coordinate system is antiparallel to the y−direction and thus lies
within the horizontal xy−plane. According to the numerical results of the simulation, the x−
and z−components of the electric field vector ~F along the x−, y−, and z−axis are about a
factor of 10−3 smaller in strength than the absolute electric field strength F and thus negligi-
ble. Figure 9.5 (a)-(c) shows the resulting electric field distribution F (x, y, z) for the xy−plane,
xz−plane, and yz−plane. In the following, the spatial dependence of the electric field strength
F (x, y, z) along the x−, y−, and z− direction is analyzed separately.

Figure 9.6 (a) shows the absolute electric field strength F along the y−axis, i.e. F (x =
0, y, z = 0) = F (y). The electric field distribution F (y) has three peaks, which are separated
from each other by two local minima. The minima are located at y ≈ ±5.3 mm. At these
positions the contributions of all electrodes to the electric field add up to 0.13(1) V/cm and
thus almost entirely cancel each other. Around y ≈ 0, F (y) takes the form of a maximum with
a broad plateau. Figure 9.6 (b) gives a closer look on that plateau and reveals that the field
distribution F (y) has a local minimum at y = 0. The field strength at the center of that local
minimum is F sim1

0 = 2.09(5) V/cm. To get knowledge of the variation of F (y) in the vicinity
of y = 0, a harmonic function of the form F (y) = F0 + F2 · y2 is fitted to the numerical data
(dashed curve in Fig. 9.6 (b)). Since the mesh size in this region of the inner domain is on the
order of 150 µm, the fit region is chosen to be |y| . 1 mm. In this way, the fit region provides a
sufficient number (here, 13 data points) for fitting. The fit yields F sim1

0,y = 2.089 13(6) V/cm and
F sim1

2,y = 0.0033(1) V/(cm · cm2). The error given in brackets is the fit error.
In a next step, the electric field along the z−direction is studied. Figure 9.6 (c) shows
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(a) (b)

(c) (d)

(e) (f)

Figure 9.6.: Electric field strengths of simulation 1 (horizontal electric field). Computed re-
sults for the absolute electric field strength F along the (a) y−axis, (c) z−axis, and (e) x−axis.
In (a), the vertical solid lines indicate the y−positions of the local field strength minima. The
plots (b), (d), and (f) are zooms into the corresponding plots (a), (c), and (e). The dashed
curves in (b) and (d) are fitted harmonic functions and the dashed line in (f) shows the fitted
field gradient. Vertical, dash-dotted lines mark the fit region for each fit.
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the electric field distribution F (0, 0, z) = F (z) as a function of the z−coordinate. The field
distribution F (z) has one maximum that is located at z = 0 and decreases monotonously for
|z| > 0. Figure 9.6 (d) shows a zoom into the field strength maximum. In order to characterize
the electric field variation around z = 0, a harmonic function (dashed curve in Fig. 9.6 (d)) is
fitted to the numerical data. For the same reason as before, the fit region is chosen to be |z| <
1 mm. The obtained fit results are F sim1

0,z = 2.0891(8) V/cm and F sim1
2,z = −0.0074(2) V/(cm ·

cm2).
In Fig. 9.6 (e) the numerical results for the electric field distribution F (x, 0, 0) = F (x)

along the x−axis are plotted. The numerical results show that the field strength F changes
rapidly in certain regions and stays constant inbetween those regions. The jumps in field
strength at x ≈ −12 mm and x ≈ 192 mm are due to the finite length of the electrodes. In
contrast, the field strength jumps at x ≈ 10 mm and x ≈ 32 mm result from changes in the
diameter of the electrodes. Figure 9.6 (f) shows that at x = 0 the curve has a saddle-point-
like shape. The interpolated electric field strength at x = 0 is F sim1

0,x = 2.088 99(2) V/cm. The
gradient F1 along the x−direction within the fit region |x| . 1 mm is determined to be F sim1

1,x =
0.00134(3) V/(cm · cm).

9.2.3. Vertical Electric Field (Simulation 2)

The second electric field simulation assumes a voltage assignment to the electrodes according
to V1,4 = −1 V and V2,3 = +1 V. The electric field vector ~F at the origin of the local coordinate
system is now parallel to the z−direction and thus points along the vertical direction. The x−
and y−components of the electric field vector are a factor of 10−2 smaller than the absolute
electric field strength F along all three spatial directions and thus again negligible. Figure 9.7
(a)-(c) shows the resulting electric field distribution F (x, y, z) for the xy−plane, xz−plane, and
yz−plane.

Figure 9.8 (a) shows the electric field distribution F (y) along the y−axis. The electric field
distribution F (y) exhibits two maxima at y ≈ ± 5.3 mm and a local minimum at y = 0. At
y = 0, the field strength is F sim2

0 = 1.77(4) V/cm, which is a factor of 0.85 smaller than the field
strength F sim1

0 of the first electric field simulation. Figure 9.8 (b) shows a zoom into the electric
field distribution around y = 0. The dashed curve in Fig. 9.8 (b) corresponds to a harmonic
function that is fitted to the numerical data within the range |y| < 1.6 mm. Since the average
element size of the mesh in this region of the inner domain is about 140 µm, the fit is based on
about 20 data points. The fit yields F sim2

0,y = 1.766(1) V/cm and F sim2
2,y = 0.1516(9) V/(cm · cm2).

Next, the electric field distribution along the z−direction is analyzed. Figure 9.8 (c) shows
the electric field distribution F (z). The electric field distribution F (z) has three maxima. The
central peak is located at z = 0 while the smaller side peaks are at positions z ≈ ± 9 mm. At
z ≈ ± 5 mm, the electric field has two local minima with local field strengths of 0.11(1) V/cm.
Figure 9.8 (d) shows a zoom into the central maximum. A harmonic function is fitted to the
numerical data within the range |z| . 1 mm (dashed curve in Fig. 9.8 (d)). The fit yields F sim2

0,z =

1.7703(7) V/cm and F sim2
2,z = −0.139(1) V/(cm · cm2).

Finally, the electric field strength dependence along the x−direction is studied. Figure 9.8
(e) shows the numerical results for the electric field distribution F (x). The field curve exhibits
the same qualitative features as the results of simulation 1 in Fig. 9.6 (e). Figure 9.8 (f) shows
a zoom into the region around x ≈ 0. A linear fit to the numerical data within the region |x| .
1 mm yields a field strength F sim2

0,x = 1.7698(7) V/cm and a gradient of F sim2
1,x = 0.008(1) V/(cm

· cm).
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Figure 9.7.: Electric field distribution of simulation 2 (vertical electric field). Electric field
strength plots for the (a) xy−plane, (b) xz−plane, and (c) yz−plane. The black arrows and the
black circle at the origins of the plots indicate the direction of the local electric field.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.8.: Electric field strengths of simulation 2 (vertical electric field). Computed results
for the absolute electric field strength F along the (a) y−axis, (c) z−axis, (e) and x−axis. In
(a), the vertical solid lines indicate the y−position of the field strength maxima. The plots (b),
(d), and (f) are zooms into the corresponding plots (a), (c), and (e). The dashed curves in (b)
and (d) are fitted harmonic functions and the dashed line in (f) shows the fitted field gradient.
Vertical, dash-dotted lines mark the fit region for each fit.
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Table 9.1.: Fit results of the electric field simulations for an horizontal and vertical electric
field. For the absolute electric field strength F0 the fit result with the largest fit error is stated.
The field gradient F1,x and the field curvatures F2,y and F2,z are given individually for each
simulation. Numbers in brackets indicate the fit error.

Fit results

F0 F1,x F2,y F2,z
(V/cm) (V/(cm · cm)) (V/(cm · cm2)) (V/(cm · cm2))

Horizontal el. field 2.0891(8) 0.00134(3) 0.0033(1) −0.0074(2)
Vertical el. field 1.766(1) 0.008(1) 0.1516(9) −0.139(1)

9.2.4. Summary of the Electric Field Simulations

The electric field simulations revealed residual field inhomogeneities at the position of the
molecules for the horizontal as well as for the vertical electric field configuration. The field
strength inhomogeneities were specified in terms of a field gradient F1,x in x−direction and
field curvatures F2,y and F2,z in y− and z−directions, respectively. Table 9.1 summarizes the
fit results of the two field simulations. A comparison of the fit results shows that the field
strength inhomogeneities are stronger for the vertical field orientation.

The maximum voltages for which the electrical feedthrough of the glass cell science cham-
ber setup is rated are ±10 kV. At these high voltages, the resulting field strength F0 at the
position of the molecules is about 21 kV/cm (horizontal electric field) and 18 kV/cm (verti-
cal electric field). These field strengths are much larger than those originally required for the
K−Cs apparatus (see Sec. 8.1.1).

9.2.5. Comments on Electrical Breakdown

The generation of high electric field strengths within the glass cell science chamber of the K−Cs
apparatus is only possible if electrical breakdown between the rod electrodes is prohibited. In
principle, an electrical breakdown between the titanium electrodes can occur through a di-
electric breakdown of the Macor® holders, surface currents that could flow across the Macor®

holders, and field emission of the rod electrodes.
The dielectric strength of Macor® is 1.290 MV/cm [Corb]. Due to machining marks, the

dielectric strength of insulating solids, however, can be lower than the specified one [Küc09].
Nevertheless, the electric field strengths that can be generated with the titanium electrodes are
much weaker than those required for Macor® loosing its insulating properties. The effect of
surface currents across the Macor® holders on the maximum electric field strength that can be
realized with the rod electrodes is hard to predict from theoretical considerations. Obviously,
a longer leakage path between the electrodes is beneficial for preventing electrical flashover.
Because of limited space within the glass cell and due to the spatial configuration of the elec-
trodes, a lengthening of the leakage path would have caused significant difficulties, e.g. a
largely restricted optical access to the molecules. Finally, to minimize the risk of field emission
of electrons from the electrodes due to microscopic scratches in the surfaces of the electrodes,
the surfaces must be smooth. The titanium rods therefore have the best surface finish that we
could get for their specific geometry (see p. 143).

In conclusion, different provisions are made against electrical breakdown between the
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Figure 9.9.: Two lattice configurations are conceivable within the glass cell. (a) If the lattice
axes of the 2D square lattice coincide with the x− and y−axis defined in Fig. 9.3, the lattice laser
beams (black arrows) along the x−axis need to pass through the CF16 viewport at the main
chamber. (b) The lattice axes (x′, y′) are rotated by 45° relative to the rod electrodes within the
horizontal plane. All lattice laser beams enter the glass cell through one of its horizontal glass
windows.

titanium electrodes. The maximum realizable electric field strength, however, has to be tested
experimentally.

9.2.6. Effects of Electric Field Inhomogeneities on Optical Trapping of 39KCs
Molecules

Lattice-confined polar molecules experience an optical lattice potential Vlatt(~r) and, in the pres-
ence of an external electric field ~F , a field-induced Stark shift UStark. The Stark shift depends
on the local electric field strength F (~r) and can be casted in the form [Bon97]

UStark(~r) = −
∫ F (~r)

0
~p(~F ′) · d~F ′ . (9.12)

The two energy contributions Vlatt(~r) and UStark(~r) lead to a combined potential Umolecule(~r) for
the molecules. In the K−Cs apparatus the 39KCs molecules within the glass cell will be trapped
within a 2D optical lattice plane in the xy−plane (see Fig. 9.3). The potential Umolecule(~r) for
the trapped 39KCs molecules can thus be written as

Umolecule(x, y) = Vlatt(x, y) + UStark(x, y), (9.13)

where UStark(x, y) is position dependent due to the residual field gradient and field curvature
along the x− and y−direction, respectively (see Table 9.1). The spatial variation of UStark(x, y)
leads to a perturbation of the lattice confinement of the 39KCs molecules. If the spatial variation
of UStark(x, y) is too strong, trapped 39KCs molecules will be able to move between lattice sites
or even escape from the optical lattice.
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(a) (b) (c)

Umolecule

x, y

Figure 9.10.: Effect of electric field inhomogeneities on an optical lattice potential. (a) If
the Stark shift UStark(x, y) (blue dashed line) was homogeneous across the 2D optical lattice
plane, the optical lattice potential Vlatt(x, y) (black curve) experienced by the molecules would
be not distorted. (b) An electric field gradient results in a tilted lattice with a constant energy
shift between adjacent lattice sites. (c) For an electric field curvature, the energy shift between
neighboring lattice sites varies with position and increases for lattice sites that are further away
from the center of the curvature. In (b) and (c), the potential barrier of the lattice sites (vertical
black arrows) is reduced compared to the undistorted lattice in (a). Figure based on figure in
Ref. [Gem16].

There are two laser beam configurations that are conceivable for the generation of a 2D
square lattice within the glass cell. Figure 9.9 (a) and (b) illustrates the two possible beam
configurations. In the configuration that is depicted in Fig. 9.9 (a) the direction of the electric
field gradient in x−direction coincides with a lattice axis. The field gradient causes an en-
ergy shift between adjacent lattice sites that is constant along the lattice axis. In contrast, the
field curvature along the y−axis gives rise to an energy shift between neighboring sites that
increases with larger distance from the center of the glass cell. Figure 9.10 illustrates the effect
of a field gradient and a field curvature on the lattice confinement. Both, field gradient and
field curvature, reduce the potential barrier height of the lattice sites.

In the following, an upper limit for the expected reduction of the lattice site potential bar-
rier height for 39KCs molecules within an optical lattice in the glass cell is calculated. To that
end, a 2D square lattice (λL = 1064 nm) with lattice constant a = 532 nm is considered. The
calculation is restricted to 39KCs molecules within the ground and first excited rotational level
of the electronic and vibrational ground state. To give an upper limit, the experimental setting
that leads to the maximum perturbation of the lattice potential is examined. For field strengths
up to 20 kV/cm, the largest induced dipole moment of the considered rotational states is ob-
tained in state |0̃, 0〉 at the maximum field strength (see Fig. 9.2). The energy shift between ad-
jacent lattice sites for a 39KCs molecule in state |0̃, 0〉 due to the electric field inhomogeneities
is maximum for the field gradient of the vertical electric field simulation pointing along a lat-
tice axis. Assuming undisturbed lattice depths V0 between 20 and 50 EKCs

rec , where EKCs
rec is the

lattice recoil energy of a 39KCs molecule, it is found that for these experimental settings the
lattice depth V0 is then reduced between about 2−5%. The lattice distortion is expected to be
smaller along the y−direction, at smaller electric field strengths F , and for the rotated lattice
configuration in Fig. 9.9 (b). It is therefore concluded that ultracold 39KCs molecules at lattice
depths V0 larger than 20 EKCs

rec will not be spilled out of the optical lattice due to the residual
electric field inhomogeneities.

For lattice depths V0 of few recoil energies EKCs
rec , 39KCs molecules can tunnel between
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lattice sites of the 2D optical lattice monolayer. Tunneling takes place as long as the on-site
harmonic oscillator states of the individual lattice sites are resonant with each other. Electric
field inhomogeneities cause a site-to-site energy offset of the molecules, which can shift the
oscillator states of different lattice sites out of resonance. If the electric field inhomogeneities
are strong enough, tunneling is suppressed in this way. Early experiments with ultracold
39KCs molecules within the glass cell of the K−Cs apparatus will concentrate on molecules
that are deeply bound (V0 ' 40EKCs

rec ). This is for instance the case for the spin−1/2 Heisenberg
XXZ lattice model with 39KCs molecules. At such deep lattices tunneling does not play a role
and thus the effect of electric field inhomogeneities on tunneling is not of any matter.

9.3. Calculation of Dipolar Spin Exchange Probability Amplitudes
for 39KCs Molecules

This Section studies the effect of electric field inhomogeneities on future experiments on the
spin−1/2 Heisenberg XXZ lattice model with ultracold 39KCs molecules in an optical lattice.
For this reason, first the question is addressed how this particular spin lattice model can be
realized with ultracold polar molecules and how its parameters relate to molecular quantities.
The parameters of the spin−1/2 Heisenberg XXZ lattice model are evaluated thereafter specif-
ically for 39KCs molecules at different electric field strengths. The calculation gives valuable
insight for future experiments of the K−Cs apparatus. Finally, the influence of the electric
field inhomogeneities of the glass cell electrodes found in Sec. 9.2.3 on dipolar spin exchange
between ultracold, polarized 39KCs molecules on a 2D square lattice is numerically studied.

9.3.1. Spin−1/2 Heisenberg XXZ Lattice Model with Polar Molecules

For a stationary observer, a rotating polar molecule, because of its pEDM, appears to possess an
oscillating electric dipole moment [Atk17]. An electromagnetic wave can act on this fluctuating
dipole moment and drive dipole transitions between rotational states that belong to the same
vibrational and electronic state. That is, polar molecules exhibit a purely rotational spectrum in
contrast to nonpolar molecules for which this is not the case [Atk17]. Transition wavelengths of
rotational transitions within the electronic and vibrational ground state of a molecule typically
lie within the microwave regime and radiative lifetimes of excited rotational states are usually
larger than ∼10 s [Hak06, Wal15].

The remainder of this Section is concerned with diatomic polar molecules in their elec-
tronic and vibrational ground state. The rotational levels of diatomic polar molecules in their
electronic and vibrational ground state are spaced unequally in energy (see Eq. (9.3)). Driv-
ing an arbitrary rotational transition within this manifold of rotational states therefore does
not couple to other rotational states. In the presence of an external electric field the states
|J̃rot,Mrot〉 can thus be addressed individually. It is therefore possible to isolate two states
|J̃rot,Mrot〉 and |J̃ ′rot,M

′
rot〉 from all other states. A polar molecule can then be treated as an

effective two-level system. For ultracold polar molecules that are pinned to the sites of an op-
tical lattice, these two states represent an internal degree of freedom of the molecules, which
can be identified as an effective spin degree of freedom. The two states may be then inter-
preted as ’spin-up’ and ’spin-down’ of a spin−1/2. It is thus possible to describe ultracold
polar molecules within optical lattices as effective spins−1/2 [Wal15].

The ground and first rotational level provide different combinations of states that can
be used to realize an effective spin−1/2. These combinations correspond to {|0̃, 0〉, |1̃, 0〉},
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{|0̃, 0〉, |1̃,−1〉}, and {|0̃, 0〉, |1̃, 1〉}. To abbreviate the notation of field-dressed states and in-
duced electric dipole moments, this Thesis follows the notation used in Ref. [Wal15]:

|↓〉 = |0̃, 0〉,
|↑〉 = |1̃, 0〉,
|↑̃〉 = |1̃,±1〉,

p↓ = 〈↓|p̂0|↓〉,
p↑ = 〈↑|p̂0|↑〉,
p↑̃ = 〈↑̃|p̂0|↑̃〉.

(9.14)

Polar molecules within an applied electric field ~F , due to their induced electric dipole
moment ~p, interact with each other via dipole-dipole interaction. For two polarized molecules
i and j at positions ~ri and ~rj , the dipole-dipole interaction Hamiltonian reads [Lah09, Wal15]

ĤDDI =
1

4πε0

p̂i · p̂j − 3 (p̂i · ~er) (p̂j · ~er)
|~ri − ~rj |3

, (9.15)

where the operator p̂i is the dipole operator of molecule i and ~er is the unit vector along the
intermolecular axis. The dipole-dipole interaction of two polarized molecules depends on
their relative orientation and is thus anisotropic. Since the dipole-dipole interaction decays
proportional to 1/|~ri − ~rj |3, it is furthermore long-range in three dimensions [Lah09].

Describing each of the two polarized molecules within the subspace {|↓〉, |↑〉}, the interac-
tion Hamiltonian ĤDDI in Eq. (9.15) can be written in the basis {|↑i〉|↑j〉, |↑i〉|↓j〉, |↓i〉|↑j〉, |↓i〉|↓j〉}
as [Wal15]

ĤDDI =
1− 3 cos2(Θij)

4πε0|~ri − ~rj |3


p2
↑ 0 0 0

0 p↓p↑ p2
↓↑ 0

0 p2
↓↑ p↓p↑ 0

0 0 0 p2
↓

 , (9.16)

where Θij is the angle enclosed by ~er and the electric field direction. The parameter p↓↑ in Eq.
(9.16) is defined as [Wal15]

p↓↑ = 〈↓|p̂0|↑〉. (9.17)

It is denoted as transition dipole moment.
The dipole-dipole interaction Hamiltonian ĤDDI for two polarized molecules in Eq. (9.16)

serves as a basis for the derivation of the many-body Hamiltonian for polarized molecules
in an optical lattice. The further discussion deals with polarized diatomic, heteronuclear
molecules within an optical lattice (2D square or 3D simple cubic) with unit filling, i.e. one
molecule per lattice site. The molecules can be either in state |↓〉 or state |↑〉 and shall occupy
the motional ground state of their respective lattice site. If tunneling of the molecules is sup-
pressed, intermolecular interaction is limited to dipole-dipole interaction. When the dipole-
dipole interaction energy of the trapped molecules is small compared to the energy splitting
of the ground and first excited rotational level of the molecules, a molecule at lattice site i can-
not change its internal state |↓i〉 (or |↑i〉) independently from the other molecules. Processes
of the type |↓i〉|↑j〉 → |↑i〉|↑j〉 that change the magnetization of the system are therefore ener-
getically off-resonant [Wal15]. Since each molecule can be described as a spin−1/2, one can
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introduce spin−1/2 operators for the molecules. Within the subspace of states {|↓〉, |↑〉}, the
spin operators for a molecule at lattice site i read [Wal15]

Ŝzi =
1

2
(|↑i〉〈↑i| − |↓i〉〈↓i|) , (9.18)

Ŝ+
i = |↑i〉〈↓i|, (9.19)

Ŝ−i = |↓i〉〈↑i|, (9.20)

with Ŝzi being the Cartesian z−component of the spin vector operator Ŝi and Ŝ+
i (Ŝ−i ) being the

spin raising (spin lowering) operator.
The effective many-body Hamiltonian that describes the trapped molecules is obtained

through summation of Eq. (9.16) over all pairs of molecules within the lattice. Using the
definitions in Eqs. (9.18)−(9.20) and choosing the electric field direction to be the quantization
axis, the effective many-body Hamiltonian can be expressed as [Wal15]

ĤDXXZ =
1

2

∑
i 6=j

1− 3 cos2(Θij)

|~ri − ~rj |3

[
J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
+ JzŜ

z
i Ŝ

z
j

]
. (9.21)

Here, ~ri and ~rj are given in units of the lattice constant a whereas in Eq. (9.15) and (9.16)
the common definition for these vectors applies. If the dipole-dipole interaction between the
polarized molecules is truncated to nearest neighbors, Eq. (9.21) simplifies to

ĤDXXZ =
∑
〈i,j〉

Jex(~ri − ~rj)
[
J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
+ JzŜ

z
i Ŝ

z
j

]
(9.22)

with

Jex(~ri − ~rj) =
1− 3 cos2(Θij)

|~ri − ~rj |3
. (9.23)

The Hamiltonian ĤDXXZ in Eq. (9.22) is identical to the Hamiltonian ĤXXZ in Eq. (1.37) except
for the factor Jex(~ri−~rj). The latter arises due to the anisotropy of the dipole-dipole interaction.
The parameters J⊥ and Jz in Eq. (9.22) can be expressed through molecular quantities and are
given through [Wal15, Yan13]

J⊥ =
2p2
↓↑

4πε0a3
, (9.24)

Jz =
(p↑ − p↓)2

4πε0a3
. (9.25)

Since p↓↑, p↑, and p↓ depend on the electric field strength F , the parameters J⊥ and Jz can be
tuned in experiments.

Choosing the alternative subspace {|↓〉, |↑̃〉}, instead of {|↓〉, |↑〉}, to describe the molecules
within the lattice, leads to a Hamiltonian ĤDXXZ that has precisely the same form of that in Eq.
(9.22) [Wal15]. The only difference is the definition of the parameters J⊥ and Jz , which now
becomes [Wal15, Yan13]
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Figure 9.11.: Field dependence of spin-coupling constants. The coupling constants J⊥ (solid
lines) and Jz (dotted lines) for the {|↓〉, |↑〉} (black) and {|↓〉, |↑̃〉} (red) manifold as a function of
the electric field strength F . Here, the absolute value of J⊥ for the {|↓〉, |↑̃〉}manifold is shown.

J⊥ =
−p2
↓↑̃

4πε0a3
, (9.26)

Jz =

(
p↑̃ − p↓

)2

4πε0a3
, (9.27)

where p↓↑̃ = −〈↓|p̂−1|↑̃〉. Switching between the two subspaces of rotational states thus changes
J⊥ by a factor of −2 and therefore allows one to change the sign of J⊥ next to its magnitude.

9.3.2. Spin−1/2 Heisenberg XXZ Lattice Model with 39KCs Molecules

The spin-coupling constants J⊥ and Jz of the dipolar spin−1/2 Heisenberg XXZ lattice model
in Eq. (9.22) are now evaluated for 39KCs molecules within a 2D square lattice with lattice spac-
ing a = 532 nm. If the applied electric field ~F is perpendicular to the lattice plane (Θij = π/2),
the factor Jex(~ri − ~rj) equals unity and hence dipole-dipole interaction between the trapped
molecules is isotropic. The dipole-dipole interaction energy between two fully polarized 39KCs
molecules on neighboring lattice sites can then be calculated with Eq. (9.15) to be on the order
of h× 3.7 kHz. It is thus much smaller than the energy splitting of the ground and first excited
rotational level of the electronic and vibrational ground state of 39KCs (see Sec. 9.1.3).

To calculate the spin-coupling constants J⊥ and Jz as a function of the external electric
field strength F for the subspace {|↓〉, |↑〉} ({|↓〉, |↑̃〉}), Eqs. (9.24) and (9.25) (Eqs. (9.26) and
(9.27)) are used. For the dipole moments p0̃,0, p1̃,0, and p1̃,±1 that appear in these equations the
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numerical results obtained in Sec. 9.1.3 are used. The transition dipole moments p↓↑ and p↓↑̃
are determined by inserting Eq. (9.10) into the definitions of p↓↑ and p↓↑̃. Figure 9.2 shows the
numerical results for p↓↑ and p↓↑̃ as a function of the electric field strength F . The transition
dipole moments p↓↑ and p↓↑̃ are maximum (≈ 1.1 D) for zero electric field and become smaller
for stronger electric fields.

Figure 9.11 shows the numerical results for J⊥ and Jz for electric field strengths up to
20 kV/cm. As the electric field strength F is varied, the magnitude of J⊥ and Jz changes.
The coupling constant Jz vanishes in the absence of an external electric field (F = 0), since
for this case p↓, p↑, and p↑̃ are zero. It is maximum at field strengths 2.9 kV/cm (2.9 kV/cm)
with Jz/h = 2047 Hz (Jz/h = 356 Hz). In contrast, at zero electric field the factor J⊥/h takes
the value 2462 Hz (−1232 Hz) and decreases (increases) monotonously for higher electric field
strengths.

9.3.3. Dipolar Spin Exchange

The dipolar spin−1/2 Heisenberg XXZ Hamiltonian is of experimental interest to the K−Cs
apparatus, especially for the case of a 2D square lattice. Following discussion is hence re-
stricted to polar molecules on a 2D square lattice that can be described by Eq. (9.22). To
quantify dipolar spin exchange between polarized molecules that sit on the sites of such an
optical lattice, two isolated molecules at nearest-neighbor sites i and j are considered. Both
molecules are exposed to an external electric field ~F (~r) perpendicular to the lattice plane, i.e.
Θij = π/2. The molecule at site i is in state |↑〉 and the molecule at site j is in state |↓〉. The total
state |Ψ〉 of both molecules is thus |Ψ〉 = |↑i↓j〉. The Stark shifts of the molecules, U↑Stark(~ri) and
U↓Stark(~rj), contribute to the energy of state |Ψ〉 and yield a Stark energy that is given by the
sum of the individual Stark shifts:

U↑↓Stark = U↑Stark(~ri) + U↓Stark(~rj). (9.28)

If the electric field ~F (~r) is homogeneous, i.e. ~F (~r) = ~F , the states |↑i↓j〉 and |↓i↑j〉 (Stark energy
U↓↑Stark = U↓Stark(~ri) + U↑Stark(~rj)) with exchanged spins are degenerate.

Both states, |↑i↓j〉 and |↓i↑j〉, are no eigenstates of the Hamiltonian ĤDXXZ in Eq. (9.22).5

The considered initial state |Ψ(t=0)〉 = |↑i↓j〉 therefore undergoes an evolution in time accord-
ing to

|Ψ(t)〉 = cos

(
J⊥
2~
t

)
|↑i↓j〉 − i sin

(
J⊥
2~
t

)
|↓i↑j〉. (9.29)

The total state |Ψ(t)〉 oscillates between |↑i↓j〉 and |↓i↑j〉, leading to spin swapping between
the molecules at a frequency J⊥/h. The spin oscillation is mediated by the dipole-dipole in-
teraction between the two molecules and corresponds to an exchange of rotational angular
momentum [Yan13].

Spin swapping as described by Eq. (9.29) is called resonant spin exchange. Resonant spin
exchange requires that for a molecule at site i the field-induced energy shift of the states |↑〉

5This can be seen from the matrix in Eq. (9.16), which contains off-diagonal matrix elements.
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and |↓〉 relative to each other, denoted as Ei↑↓ with

Ei↑↓ = U↑Stark(~ri)− U↓Stark(~ri), (9.30)

must be equal to the relative shift in energy Ej↑↓ at site j, i.e. Ei↑↓ = Ej↑↓. For inhomogeneous
electric fields, the relative energy shift Ei↑↓ is site-dependent. Equation (9.22) must then be
replaced by [Wal15]

Ĥ inh
DXXZ =

∑
〈i,j〉

Jex(~ri − ~rj)
[
J⊥
2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
+ JzŜ

z
i Ŝ

z
j

]
+
∑
i

hiŜ
z
i . (9.31)

The last term in Eq. (9.31),
∑

i hiŜ
z
i , arises due to the inhomogeneous electric field. It describes

the potential energy of the effective spins within an effective, site-dependent magnetic field
[Zha05].

The variation of the relative energy shift Ei↑↓ between neighboring lattice sites i and j is
defined in the following as

∆Eij↑↓ = Ei↑↓ − E
j
↑↓. (9.32)

If the electric field strength F varies from site i to site j by (∆F )ij with (∆F )ij � F , ∆Eij↑↓ can
be approximately written as

∆Eij↑↓ = − (p↑ − p↓) (∆F )ij . (9.33)

The temporal evolution of the two molecules initially in state |Ψ(t=0)〉 = |↑i↓j〉 is then deter-
mined by the Hamiltonian

Ĥ =

(
−∆Eij↑↓/2 J⊥/2

J⊥/2 ∆Eij↑↓/2

)
. (9.34)

The probability to find the two molecules after some time t in state |↓i↑j〉 with interchanged
spins is then

|〈↓i↑j |Ψ(t)〉|2 = S · sin2

(
Ωex

2
t

)
, (9.35)

where the spin exchange probability amplitude S is given by

S =
J2
⊥

J2
⊥ + (∆Eij↑↓)

2
(9.36)

and the Rabi frequency Ωex can be calculated through

Ωex =
1

~

√(
∆Eij↑↓

)2
+ (J⊥)2. (9.37)
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Figure 9.12.: Energy splittings E↑↓ and E↑̃↓ as a function of electric field strength F . Energy
splitting E↑↓ (black curve) and E↑̃↓ (red curve) of the states |↑〉 and |↓〉, respectively, |↑̃〉 and |↓〉
for 39KCs. For zero electric field (F = 0), the splitting is 2hcBrot in both cases.

Electric field inhomogeneities (|∆Eij↑↓| > 0) lead to a reduction of the spin exchange probability
amplitude S, i.e. S < 1, as can be seen from Eq. (9.36). To observe spin exchange at nearly full
amplitude, ∆Eij↑↓ must be much smaller than J⊥.

In practice, dipolar spin exchange is not restricted to nearest-neighbor molecules and can
in principle take place between any two molecules with opposite effective spins as long as the
electric field is sufficiently homogeneous across the 2D square lattice. For two molecules at
different lattice sites, the effective spin coupling strength depends on their mutual separation,
which enters Eq. (9.22) through the factor Jex(~ri − ~rj). Due to the dependence of the factor
Jex(~ri − ~rj) on the spatial separation of the spins, the spin exchange probability amplitude S
and Rabi frequency Ωex differ for different pairs of molecules.

9.3.4. Dipolar Spin Exchange with 39KCs Molecules

Since the rod electrodes within the glass cell science chamber will generate electric fields that
are not perfectly homogeneous, the energy splitting E↑↓ of 39KCs molecules within an optical
lattice will be site dependent. For this reason, the reduction of the spin exchange probability
amplitude S due to the electric field inhomogeneities is numerically studied. The following
calculations consider 39KCs molecules that are trapped within a 2D square lattice (lattice spac-
ing a = 532 nm) that lies within the xy−plane in Fig. 9.3 and that is oriented such that its lattice
axes coincide with the x− and y−direction. Within this setting, the spin exchange probabil-
ity amplitude S is evaluated for the electric field distribution of the electric field simulation
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Figure 9.13.: Spin exchange probability amplitude. Calculated spin exchange probability am-
plitude S for dipolar spin exchange between 39KCs molecules at nearest-neighbor sites within
a 2D square lattice (lattice spacing a = 532 nm). The amplitudes S are given for the {|↓〉, |↑〉}
(red) and {|↓〉, |↑̃〉} (black) subspace. Solid curves indicate the amplitude Sx for dipolar spin ex-
change along the x−axis and dashed curves show the amplitude Sy for dipolar spin exchange
along the y−direction. The dotted curves give the spin exchange probability amplitude Sx′ for
dipolar spin exchange along the x′−axis of the rotated lattice configuration.

2 (vertical electric field) in Sec. 9.2.3 and for field strengths up to 20 kV/cm. The spin ex-
change probability amplitude is studied for the two subspaces {|↓〉, |↑〉} and {|↓〉, |↑̃〉} for spin
exchange between nearest-neighbor lattice sites. Figure 9.12 presents the energy splittings E↑↓
and E↑̃↓ as a function of the electric field strength F . The energy splittings E↑↓ and E↑̃↓ grow
for increasing electric field strength F and reach values of h× 10.9 GHz and h× 6 GHz, respec-
tively, at an electric field strength of 20 kV/cm. For zero electric field (F = 0), the splitting is
2hcBrot in both cases, as expected.

The inhomogeneity of the electric field of simulation 2 was specified in terms of an electric
field gradient F sim2

1,x in x−direction and an electric field curvature F sim2
2,y along the y−axis. The

variation of the (transition) dipole moments within the field of view of the K−Cs imaging
system around the center of the glass cell science chamber is small compared to their absolute
values. Hence, J⊥ can be approximately regarded as constant across the field of view. Along
the x−direction the nearest-neighbor variation ∆Ei,i+1

↑↓ (∆Ei,i+1

↑̃↓ ) and associated spin exchange
probability amplitude Sx are thus constant (compare with Eq. (9.33)). Along the y−direction,
however, the energy splitting ∆Ei,i+1

↑↓ (∆Ei,i+1

↑̃↓ ) changes from site to site and is largest for
lattice sites far away from the center of the glass cell. To obtain a lower limit for Sy along
the y−axis, Sy is computed for spin exchange between the two lattice sites on the y−axis that
are most outer of the field of view of the K−Cs imaging system. These lattice sites have local
coordinates (0/+39.368 µm) and (0/+39.9 µm). Figure 9.13 shows the calculated spin exchange
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Figure 9.14.: Critical electric field strengths. Zoom into Fig. 9.13 for electric field strengths up
to 10 kV/cm. The spin exchange probability amplitudes are given for the {|↓〉, |↑〉} (red) and
{|↓〉, |↑̃〉} (black) subspace. Solid curves indicate the amplitude Sx for dipolar spin exchange
along the x−axis and dashed curves the amplitude Sy for dipolar spin exchange along the
y−direction. The dotted curves give the spin exchange probability amplitude Sx′ for dipolar
spin exchange along the x′−axis of the rotated lattice configuration. The blue, dotted hori-
zontal line illustrates the amplitude benchmark value of 0.99. The vertical, blue dotted lines
indicate the critical electric field strengths Fcrit.

probability amplitudes Sx and Sy as a function of the external electric field strength F for the
subspaces {|↓〉, |↑〉} and {|↓〉, |↑̃〉}. The amplitude Sx decreases faster for stronger fields than
Sy.

Next, the probability amplitude S for nearest-neighbor spin exchange along the lattice
axes of the rotated lattice configuration is analyzed. The results for the rotated lattice configu-
ration are obtained by Taylor expansion of the electric field strength F (x, y) around the origin
of the local coordinate system. The mixed derivative ∂2F (x, y)/∂x∂y that appears in the expan-
sion is neglected in our calculations. Thus, the results for the rotated lattice configuration are
approximations. Since dipolar spin exchange along the rotated x′− and y′−axes is affected in
the same way by the field inhomogeneities, the results for the nearest-neighbor spin exchange
probability amplitudes Sx′ and Sy′ overlap with each other. Figure 9.13 therefore shows only
the results for Sx′ .

Dipolar spin exchange between ultracold polar molecules within an optical lattice was
observed in the past in Ref. [Yan13]. In these experiments, 40K87Rb molecules were con-
fined within a cubic lattice (lattice constant a = 532 nm) to realize the spin−1/2 quantum XY
model. To encode the spin−1/2 to the molecules, the rotational subspace {|↓〉, |↑̃〉} was used.
Within the given experimental setting, the constant |J⊥/2h| for nearest-neighbor dipolar spin
exchange was measured to be 48(2) Hz and |∆Ei,i+1

↑̃↓ /h| was determined to be 6 Hz [Yan13],
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yielding a spin exchange probability amplitude S ≈ 0.99 [Mos16]. The value of 0.99 is used as
a benchmark for the spin exchange probability amplitude S within the K−Cs apparatus.

Next, the critical electric field strengths Fcrit for which the previously calculated spin ex-
change probability amplitudes S have decreased to 0.99 are determined. Figure 9.14 shows
a zoom into Fig. 9.13 for electric field strengths up to 10 kV/cm and gives the critical electric
field strengths Fcrit. For the subspace {|↓〉, |↑〉} ({|↓〉, |↑̃〉}), the critical electric field strength Fcrit
with respect to the x−axis is 1.4 kV/cm (1.7 kV/cm) and with regards to the y−axis 4.2 kV/cm
(8.4 kV/cm). For the x′−axis, the spin exchange probability amplitude reaches the benchmark
value for an electric field strength of 1.6 kV/cm (1.9 kV/cm).

The results in Fig. 9.14 suggest that the electric field that is generated by the titanium elec-
trodes within the glass cell science chamber will be homogeneous enough to observe nearest-
neighbor dipolar spin exchange between 39KCs molecules across the entire field of view of the
imaging system for field strengths up to 1.4 kV/cm.
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10. Setting up a Diode Laser System for
Violet Fluorescence Imaging of 39K
Atoms

To image ultracold 39K atoms within optical lattices in future, the K−Cs apparatus aims to
use violet fluorescence quantum gas microscopy on the 4S1/2 → 5P3/2 transition (λimage =
404.4 nm). Therefore, as part of this Thesis, a home-built diode laser system was set up that
generates laser light at 404.4 nm. Additionally, in order to control the frequency of the violet
laser light that is sent to the 39K atoms within the vacuum chamber, a frequency stabiliza-
tion and shifting setup was built. This Chapter summarizes the status quo of (ultra-) violet
fluorescence imaging of ultracold alkali atoms. It further describes the laser design and the
optical setup for frequency stabilization and shifting of the laser light that were set up. Fi-
nally, it presents the first results on imaging 39K atoms with violet laser light within the K−Cs
apparatus.

10.1. (Ultra-) Violet Fluorescence Imaging

Over the last years fluorescence quantum gas microscopes have been designed for various
atomic species including elements of the alkalis and lanthanides. Table 3.2 indicates that 7 out
of at least 9 presently existing FQGMs are operated with alkali atomic species on the respec-
tive principal D1 or D2 atomic transition, resulting in spatial resolutions of around 600 nm. To
build a FQGM with a higher spatial resolution, one faces two options: one can either design the
imaging system to have a larger lens diameter or a shorter working distance. Both increases the
numerical aperture and thus the resolution of the imaging system. Objectives with increased
diameter or reduced working distance, however, might be unfavorable in some quantum gas
apparatuses due to geometrical restrictions coming from the vacuum apparatus or laser beams
that will be blocked otherwise. Alternatively, one can employ atomic transitions with transi-
tion wavelengths in the violet or ultraviolet for fluorescence imaging.

Currently, FQGMs that work in the (ultra-) violet part of the spectrum have been realized
only for lanthanide atoms (see Table 3.2). In the related experiments single lattice-confined
174Yb atoms were detected via fluorescence imaging on the dipole-forbidden 1S0 → 1P1 atomic
transition with λimage = 399 nm. The resultant FWHM resolution of the employed imaging
systems was determined to be around 340 nm. For alkali atoms, atomic ground-state tran-
sitions with transition wavelengths in the (ultra-) violet region require intershell transitions
nS1/2 → n′PJ ′ with n′ > n and J ′ ∈ {1/2, 3/2}. Table 10.1 summarizes the transition wave-
lengths of the two lowest lying ground-state intershell transitions (n′ = n+ 1) for alkali atoms.
The energy gap between the energetically lower (n+1)P1/2 level and the upper (n+1)P3/2 level
increases for heavier atoms and becomes smaller with increasing principal quantum number
n. With regard to potassium, the two ground-state intershell transitions 4S1/2 → 5P1/2 and
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Table 10.1.: Ground-state intershell D line transitions in alkali atoms. Transition wave-
lengths of ground-state transitions nS1/2 → (n+ 1)P1/2,3/2 in alkali atoms [Kra49].

Element

Transition Li Na K Rb Cs

nS1/2 → (n+ 1)P1/2 323.4 nm 330.3 nm 404.7 nm 421.6 nm 459.3 nm

nS1/2 → (n+ 1)P3/2 323.4 nm 330.2 nm 404.4 nm 420.2 nm 455.5 nm

Reference [Rad95] [Kraa] [Kra49] [Kra49] [Kra49]

4S1/2 → 5P3/2 have a transition wavelength of 404.7 nm and 404.4 nm [Kraa], respectively.
Intershell transitions in alkali atoms have attracted experimental interest within the ul-

tracold quantum gas community in the past. In Ref. [Dua11], P. M. Duarte et al. made use
of the narrow but dipole-allowed 2S1/2 → 3P3/2 transition (λ = 323 nm) of 6Li to laser cool
and magneto-optically trap ensembles of 6Li atoms. The authors of the publication demon-
strated that ultraviolet laser cooling can increase the atom number and production rate of a
quantum degenerate gas of 6Li atoms. Related work was done by D. C. McKay et al. with 40K
atoms [McK11]. Here, laser cooling was performed on the 4S1/2 → 5P3/2 transition. For similar
reasons the violet transition of potassium was also studied by A. Ridinger in the group of C.
Salomon [Rid11b]. Even though the intention of these experiments, namely narrow-line laser
cooling, is different from the plan for the K−Cs apparatus, their experimental results point
out that experiments with ultracold atoms can benefit from addressing excited, higher-lying
atomic levels.

Violet fluorescence quantum gas microscopy of trapped alkali atoms has not been demon-
strated so far. However, efforts in that direction have been undertaken in the group of J. H.
Thywissen. There, optical molasses cooling and EIT cooling were tried out to cool 40K atoms
trapped in an optical lattice during fluorescence imaging on the 4S1/2 → 5P3/2 transition. Both
attempts were reported to not be successful most likely due to inefficient cooling of the atoms
[Edg17].

10.2. Laser Design and Laser Diodes

Violet diode lasers for laboratory use are available as commercial laser systems or can be re-
alized by home-built laser setups. Commercial lasers, due to their ready-to-use state upon
delivery, represent a fast and efficient solution, however, typically cost tens of thousands of
euro and are thus rather costly in purchasing. If not much violet laser power is needed, a
home-built laser system can be more economic but at the same time is more elaborate, risky,
and time consuming in setting up. For the generation of violet laser light experimental groups
within the ultracold quantum gas community often fall back upon commercial laser systems.
In Innsbruck, for example, the Ferlaino group and the Grimm group use commercial laser sys-
tems to generate 401 nm and 421 nm light in ultracold quantum gas experiments with erbium
[Ilz18] and dysprosium [Rav18] atoms. Within the Nägerl group, many home-built diode laser
systems for infrared and visible laser light were developed and built over the past years. For
the generation of violet laser light at 404.4 nm, it was therefore decided to set up another home-
built diode laser system. This gives the chance to expand the knowledge of home-built laser
systems within the Nägerl group from the infrared and visible spectrum towards the violet
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outer housing

inner housing
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diffraction grating

piezo crystal
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BNC
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of measure-
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Figure 10.1.: Laser design of the violet laser. The laser diode and a collimation lens are held
inside an aluminum mount. At the right side of the aluminum mount the connectors of the
laser diode and of Peltier elements can be seen. A diffraction grating in Littrow configuration
optically stabilizes the laser diode. The grating is mounted to a commercial kinematic mount.
A piezo element allows the variation of the length of the external cavity of the laser. The
laser diode and the grating reside within an inner and outer housing. The front covers of the
housings as well as the cap of the inner housing are removed here for illustrative reasons. The
outer housing incorporates a measurement bridge for electronic control. A plastic plate helps
to thermally isolate the inner housing from the outer housing.

regime.
The home-built violet diode laser is an external-cavity diode laser. It uses a commercial

laser diode that is optically stabilized by feedback from a diffraction grating. The laser diode
and the grating are part of a mechanical laser design that was developed before this Thesis.
Figure 10.1 shows the mechanical design of the violet diode laser. It consists of two aluminum
housings of which the smaller housing is placed inside the larger one. The inner housing
encapsulates the laser diode and the grating, which are mounted to a common base plate. In
order to thermally insulate the inner housing from the outer one, the common base plate rests
upon a plastic plate. The plastic plate separates both housings from each other. A heating
pad between the plastic plate and the inner base plate enables one to electronically control the
temperature of the inner housing. The inner housing temperature is set to be higher than the
temperature of the outer housing, which is at room temperature. Since any air flow within the
laser housing leads to heat convection between the inner and outer housings and additionally
can transfer acoustics to the laser, the aluminum case structure is entirely closed except for two
small, horizontal holes in the housing. These holes are needed to transmit the laser beam to
the optical table.

The laser diode is mechanically clamped inside an aluminum mount. To temperature
stabilize the laser diode, several Peltier elements surround the laser diode socket. The temper-
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ature of the laser diode and the inner housing is measured by two separate 10k-NTC thermis-
tors. The thermistors are evaluated by a measurement bridge, which is mounted to the inner
side of the outer housing. The measurement bridge generates temperature error signals and
feeds those to an external temperature proportional-integral-derivative (PID) controller. On
the basis of these error signals, the PID controller adjusts the electric currents of the Peltier
elements and the heating pad and thereby regulates the temperature error signals to zero.

Opposed to the output facet of the laser diode a diffraction grating is placed. The grating
is aligned in Littrow configuration [Wie91, Ric95] and thus diffracts the incident laser light
such that the first diffraction order is sent back to the laser diode and the zeroth diffraction
order is reflected out of the housing as output beam. The grating is braced onto a standard
optomechanical kinematic platform mount, which allows for the optimization of the optical
feedback to the laser diode. A small piezo crystal that is connected to the horizontal microm-
eter screw of the kinematic mount facilitates changing the length of the external cavity and
thereby allows for scanning the laser wavelength. Laser diodes are a source of strongly di-
verging laser beams with elliptical beam profiles. To collimate the output beam of the violet
laser diode, a moveable aspheric lens is positioned in front of the laser diode. The collimation
lens is mounted within the aluminum mount.

To realize a budget-friendly diode laser, various laser diodes were tried out. In total ten
laser diodes were purchased and all of them were tested. Among those laser diodes were nine
cheap (∼60e/piece) laser diodes of two different types1,2 from Thorlabs and a single upmarket
(∼1700e) laser diode3 from Nichia. Thorlabs could not give any information on whether the
laser diodes had an anti-reflection coating on their output facets and on their glass windows.
Nichia in contrast confirmed that the laser diode has an anti-reflection coating on the glass
window but not on the diode chip front facet.

The first nine laser diodes that were tried out, were Thorlabs laser diodes. Since these
laser diodes came untested in wavelength, the center wavelength of each laser diode was first
measured with an optical spectrum analyzer. The measured center wavelengths covered a
range from 401.9 nm to 407.4 nm. Some of the tested diodes thus had center wavelengths that
were far off from the desired wavelength of 404.4 nm. Attempts to bring the center wave-
lengths of these laser diodes closer to 404.4 nm by adjusting the laser diode temperature lead
to new problems such as unstable laser operation. Some Thorlabs laser diodes failed to run
single-mode within the laser setup and yet others delivered only a few milli watts single-mode
output power, which was too little for the intended optical setup. In the course of trying to
get the Thorlabs laser diodes to run single mode in a stable fashion, several strategies were
tried out. These strategies included using different gratings, changing the amount of optical
feedback to the laser diode, implementing a polarization-selective element to the external laser
cavity for cleaning the polarization, testing different collimation lenses, and trying to remove
the protection cap of a laser diode. In spite of all attempts, no reliable laser operation with the
Thorlabs laser diodes was achieved. For this reason, the laser diode was changed to that of
Nichia.

The best performance of the violet diode laser in terms of stability, single-mode operation,
and output power was obtained with the laser diode from Nichia. The laser that is described
in this Thesis therefore refers to the realization with that specific laser diode. The Nichia laser
diode has a center wavelength of 405 nm, is specified to run single-mode, and is capable of de-

1Thorlabs, L405P20.
2Thorlabs, DL5146-101S.
3Nichia, Single-Mode Laser Diode NDV4316.
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10.3. Optical Setup

livering up to 120 mW output power. To collimate the emitted elliptical laser beam, a molded,
aspheric lens4 is used. The grating is a holographic diffraction grating5 that is placed at a
distance of about 56 mm in front of the laser diode. The grooves of the grating are oriented
vertically such that the output laser beam is reflected within the horizontal plane. The linear
polarization axis of the laser light coincides with the minor axis of the elliptical laser beam
and is oriented parallel to the direction of the grating grooves. For this orientation, the optical
feedback of the grating is specified to be∼ 22 % according to the grating’s data sheet. The tem-
peratures for the inner housing of the laser and the laser diode are set to 25.5 ◦C and 30.3 ◦C,
respectively.

From the beginning of working with the violet diode laser it was rather difficult to get
the Nichia laser diode to run single-mode at the desired wavelength of 404.4 nm. It was even
harder to stably operate the diode over a longer time than ∼ 20 min without multi-mode op-
eration. Judging from the experiences with the Nichia laser diode, two reasons contributed
to the aggravated single-mode operation: first, the Nichia laser diode exhibited rather narrow
plateaus in the diode current, at which the diode would run single-mode. Typically, a change
∆Idiode in diode current with ∆Idiode � 1 mA brought the laser already to multi-moding even
with manual feed-forward of the piezo voltage. Attempts to operate the diode laser at differ-
ent temperatures of the laser housing and laser diode did not improve the stability. Since the
single-mode plateaus of laser diodes are generally observed to be broader in diode current at
lower diode currents, it was also tried to benefit from operating the laser diode at lower diode
currents. Also shifting the operating point of the laser diode to higher diode currents did not
help in that respect. A general rule of thumb says that the mode-hop free tuning range of a
laser diode decreases for shorter laser wavelengths and vice versa. In that respect, it could be
that the behavior of the purchased Nichia laser diode is rather common than uncommon for
violet laser diodes and that the instability issue is hence not a matter of malfunction. A sim-
ilar mode instability was observed when scanning the laser frequency by means of the piezo
voltage.

A second aspect that led to complications with the violet diode laser was some sort of
uncontrollable drift that regularly appeared and gradually deteriorated the single-mode per-
formance of the diode laser. A quick adjustment of the laser parameters such as piezo voltage
and diode current could sometimes recover the spectroscopy signal but ended as often in the
total loss of signal. In the latter case, the drifts entailed a time-consuming realignment of the
laser. Despite all efforts, the cause of that drift remained unknown to us.

10.3. Optical Setup

To shield the laser setup from external disturbances, a wooden, soundproofed box was built
around the diode laser and the surrounding optical setup. Figure 10.2 depicts the optical setup
for the violet diode laser. The output beam of the diode laser first passes through an anamor-
phic prism pair to make the elliptical beam nearly radially symmetric. An optical isolator
placed after the prism pair blocks back reflections of subsequent optical elements and thus
avoids undesired optical feedback to the laser diode. Following this, a half-wave plate to-
gether with a polarising beam splitter (PBS) splits the laser beam into two beams. One beam
gets reflected towards a section that is needed to frequency-lock the diode laser (frequency sta-

4Thorlabs, C340TMD-A.
5Thorlabs, GH13-18U.
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Figure 10.2.: Optical setup. Schematical overview of the optical setup for frequency locking
and frequency shifting of the violet laser light. The legend on the lower side of this Figure
assigns an optical element to each symbol.
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bilization section). The second beam travels towards a section that is required to shift the laser
frequency of the light portion that is sent to the main chamber and that couples that light into
a glass fiber (frequency shifting section).

The frequency stabilization section uses the technique of modulation transfer saturation
spectroscopy (MTSS) for frequency stabilization. Modulation transfer saturation spectroscopy
is a pump-probe scheme with sub-Doppler resolution [McC08]. In this scheme, two counter-
propagating laser beams are overlapped with each other within a gaseous medium of a vapour
cell. One beam, the pump beam, is frequency modulated at a frequency νm. The frequency mod-
ulation creates sidebands around the carrier frequency νc of the pump beam with frequencies
νc ± nνm with n ∈ Z. The frequency sidebands are transfered from the pump beam to the
counter-propagating beam (probe beam) via four-wave mixing through the third-order suscep-
tibility of the gaseous medium. The sidebands cause an interference-induced intensity oscilla-
tion of the probe beam, which can be detected by a photo diode. Through down-conversion of
the photo diode signal with the modulation frequency νm and low-pass filtering, a frequency
error signal is generated and can be used for frequency locking.

Frequency stabilization via MTSS is similar to the Pound-Drever-Hall technique [Bla01]
and superior to other schemes [McC08]: it offers sub-Doppler resolution and therefore leads
to steeper error signals with augmented frequency discrimination compared to other locking
techniques. It produces a zero offset line and ergo the error signal zero crossings are centered
on the atomic transitions. Furthermore, the zero crossing in MTSS remains largely unaffected
from fluctuations in laser intensity, laser polarization, and temperature [McC08]. Modulation
transfer saturation spectroscopy has been the standard technique in the laboratories of the
Nägerl group since 2000 for locking diode lasers.

Modulation transfer saturation spectroscopy is realized within the optical setup of the vi-
olet diode laser as follows. A λ/2−waveplate in combination with a PBS splits the laser beam
that is sent to the frequency stabilization section into a probe and a pump beam. Rotation of
the waveplate allows for the controlled distribution of the laser power between the probe and
pump beam. The pump beam is frequency modulated through an electronically driven crystal
that serves as an electro-optical modulator at a frequency of νm = 1.2 MHz. This frequency is
chosen in view of the condition 2πνm ' 0.7Γ (here Γ is the line width of the 4S1/2 → 5P3/2

transition), which maximizes the slope of the error signal [McC08, Ebl07, Ma90]. In order to
avoid truncation of the pump beam through the limited aperture of the electro-optical crys-
tal, the laser beam is focused onto the crystal with a plano-convex lens. A second lens after
the crystal recollimates the diverging pump beam. The pump beam is overlapped with the
probe beam inside a ∼ 100 mm-long potassium vapour cell. To control the potassium vapour
pressure within the vapour cell, the cell is wrapped with heating wires. The cell is heated
to a temperature of 84 ◦C. The probe beam is directed to the vapour cell without any optical
manipulation. After having passed through the vapour cell, the probe beam is focused onto a
photo diode. To generate a frequency error signal that is suitable to frequency lock the violet
diode laser, it was necessary to forward most of the laser power of the diode laser towards the
frequency stabilization section. The violet laser is locked on the 39K ground-state cross-over
resonance.

The frequency shifting section is used to tune the frequency of the laser beam that is sent
to the experiment into resonance with the 4S1/2 F = 1 → 5P3/2 transition of 39K. It comprises
an acousto-optical modulator6 (AOM) in double-pass configuration. Since the laser light is
locked to the ground-state cross-over resonance of 39K, the AOM must be driven at a frequency

6Gooch & Housego, 3110-120.
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Figure 10.3.: Hyperfine structure in potassium isotopes. Hyperfine structure of the 4S1/2

ground state and the excited 5P1/2 and 5P3/2 levels of the potassium isotopes (a) 39K and (b)
41K. The isotope shift of the 4S1/2 → 5P3/2 transition between the two mentioned isotopes is
unknown to us and therefore denoted with δν. Data for 39K is taken from Ref. [San08] and for
41K from Ref. [Ari77, Ney69, Sin12, Jia13, Beh11]. Based on figure in Ref. [Han15].

that corresponds to a quarter (115.4 MHz) of the ground-state hyperfine splitting of 39K to bring
the laser into resonance with that transition. Figure 10.3 (a) shows the hyperfine structure of
the 4S1/2 and 5P1/2,3/2 levels of 39K. The efficiency of the AOM double pass was measured to
be 53 %. The frequency-shifted laser light is sent to the main chamber through a glass fiber7.
The coupling efficiency into the fiber was determined to be 48 % of the incident laser power.

10.4. Experimental Results

To characterize the violet diode laser, the laser output power Plaser is recorded as a function
of the laser diode drive current Idiode. The laser output power is measured with a commercial
power meter8, which has a measurement uncertainty of ± 5 % in the spectral region between
400 nm and 439 nm. At first, the power dependency of the laser diode is determined when

7Thorlabs, PM-S405-XP.
8Thorlabs, S121C.
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(a)

(b)

Figure 10.4.: Laser output power versus diode current. (a) Experimental data for the depen-
dence of the optical output power Plaser of the violet diode laser on the diode current Idiode.
The black squares show the data for the bare laser diode without optical feedback. The orange
squares show the data for optimized optical feedback to the laser diode. The depicted curves
are guides for the eye. (b) Zoom into (a).
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Figure 10.5.: Saturated absorption spectroscopy signal. Transmission spectrum obtained from
saturated absorption spectroscopy on potassium vapour. The transmission peaks and dips oc-
cur because of absorption on atomic transitions and cross-over (CO) resonances, which are
indicated in the Figure and discussed in the main text. The piezo voltage Upiezo and the trans-
mission of the probe laser are both given in arbitrary units.

no optical feedback is sent back to the laser diode. Figure 10.4 (a) shows the experimentally
obtained Plaser − Idiode curve. The laser output power Plaser is constant and nearly zero below
a certain threshold current Ibare

th and increases linearly for Idiode > Ibare
th . The resulting curve

thus shows the expected qualitative behavior of an ideal laser diode. By fitting a linear function
to the data for laser diode currents between 36 mA and 115 mA the threshold current Ibare

th is
determined. The linear fit yields an intersection with the Idiode−axis at Ibare

th = 34.5(2) mA.
As a next step, the measurement of the Plaser− Idiode curve is repeated now for optimized

optical feedback to the laser diode. The results for this measurement are also given in Fig.
10.4 (a). The data for the optically stabilized diode laser exhibits a threshold behavior that is
similar to the curve for the bare laser diode. When comparing the two Plaser−Idiode curves, one
notices that the slope of the stabilized laser diode is smaller and the threshold current appears
at a lower current. The ascending branch of the data for the laser diode with optical feedback
segments into two sections. For currents Idiode between 30 mA and 50 mA, the data exhibits
kinks in laser power. Figure 10.4 (b) shows a zoom into Fig. 10.4 (a) and reveals the kinks in
laser power. These kinks are most likely a result of mode-hops and multi-mode operation. For
Idiode ≥ 50 mA, the data is smooth and displays a clearly linear increase. The two sections have
different slopes as can be verified by independent fits of linear functions to the two sections.
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10.4. Experimental Results

To determine the laser threshold current I fb
th for the stabilized diode laser, linear functions are

fitted to the two regions [31 mA,50 mA] and [50 mA,115 mA]. As intersection points of the
linear functions with the Idiode−axis the values I fb

th,1 = 30.7(1.4) mA and I fb
th,2 = and 33.7(2) mA

are obtained, respectively. A comparison of Ibare
th and the two values for I fb

th shows that the
optical feedback lowered the threshold current as expected independently of which value for
I fb

th is considered as threshold current. Up to 27 mW of single-mode laser light were achieved
with the violet laser setup.

Finally, the optical setup of the frequency stabilization section is utilized to record an
absorption spectrum of the potassium vapour within the heated vapour cell. To that end,
the modulation of the pump beam is switched off. As the piezo voltage Upiezo of the laser is
scanned the intensity of the probe beam after transmission through the vapour cell is detected
with the photo diode. The unmodulated pump beam transfers K atoms from the 4S1/2 ground
state into higher excited states and thereby modifies the absorption of the atomic vapour. The
counter-propagating probe beam detects the modified absorption only when both beams act
on atoms in the same velocity class. Since pump and probe beam have the same laser fre-
quency, the latter is the case for atoms that move in some velocity class v = 0 perpendicular to
the pump and probe beam. Absorption then takes place only when the frequency of the diode
laser fulfills the sub-Doppler resonance condition of an optical transition [Smi04] (Doppler-free
saturation absorption spectroscopy). The transmission spectrum that is recorded by the photo
diode therefore exhibits the hyperfine structure of the K atoms that is otherwise masked by
the Doppler broadened overall absorption profile.

To scan the frequency of the violet diode laser, a time-varying voltage Upiezo with a trian-
gular waveform is applied to the piezo crystal within the laser housing. Figure 10.5 shows the
obtained transmission spectrum. Because it was not possible to probe the absorption spectrum
across the Doppler profile without mode-hopping, the transmission spectrum shown in Fig.
10.5 consists of three images that were combined to one spectrum. The spectrum exhibits a
Doppler- and collision broadened profile with sub-Doppler dips and peaks. Near the center of
the transmission spectrum at about Upiezo ≈ 3 in Fig. 10.5, a prominent dip marks enhanced
absorption while the peaks to both sides of the central dip indicate enhanced transmission.
The transmission peaks occur due to hyperfine ground-state transitions that are driven by the
pump beam.

In order to identify the atomic transitions that are responsible for the occurence of the
transmission peaks in the recorded transmission spectrum, the experimental results are com-
pared with the theoretical predictions given in Ref. [Han15]. According to these theoretical
predictions, the left and right central peaks are caused due to the atomic transitions 4S1/2

F = 2 → F ′ and 4S1/2 F = 1 → F ′ of 39K. The central transmission dip thus corresponds to
the 39K cross-over resonance. The additional (smaller) features to the right side of the trans-
mission spectrum in Fig. 10.5 come presumably from a residual amount of 41K atoms in the
vapour cell. From left to right, the transmission features are assumed to arise due to the atomic
transition 4S1/2 F = 2→ F ′ and the 41K cross-over resonance. Figure 10.3 (b) shows a reduced
level scheme of 41K with the hyperfine structure of the 4S1/2, 5P1/2, and 5P3/2 levels.

When the pump beam of the frequency stabilization section is frequency-modulated, the
error signal for frequency stabilization is obtained. Figure 10.6 depicts a typical error signal
that is generated by the MTSS setup. For this measurement, the laser frequency is tuned across
the ground-state cross-over resonance of 39K.

After a long time of testing, optimizing, and rebuilding the violet laser setup, violet laser
light was sent to the potassium atoms within the main chamber. At that time, the instability
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Figure 10.6.: Frequency error signal. A typical error signal (orange curve) for frequency lock-
ing of the violet laser obtained with the laser setup. The laser frequency is scanned across the
ground-state cross-over resonance of 39K by modulating the piezo voltage Upiezo. The error
signal is derived from the photo diode signal (blue curve) of MTSS. The piezo voltage Upiezo
and the error signal as well as the photo diode signal are given in arbitrary units.

of the diode laser was not solved and re-locking of the laser was necessary several times per
hour. To align the violet laser beam to the 39K atoms within the main chamber, a 39K 3D-MOT
was repeatedly loaded and transfered into a compressed MOT. While the atoms were cooled in
the compressed MOT the atoms were exposed to violet laser light. After the compressed MOT
phase, the remaining 39K atoms were imaged via absorption imaging on the D2 line transition.
Figure 10.7 shows two absorption images of 39K atoms taken after the compressed MOT phase
and during the alignment of the violet laser beam. The images demonstrate the influence of
the resonant violet laser light on the 39K atom cloud for two different positions of the violet
laser beam. In both cases atoms were removed from the atom cloud and leave behind a gap,
which is clearly visible in the Figure. The images show that the violet laser addresses the 39K
atoms.
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10.4. Experimental Results

(a) (b)

Figure 10.7.: Absorption images of potassium atoms. The two absorption images (taken at
766 nm) show the influence of the resonant violet laser beam during its alignment to the atoms.
The violet laser beam (a) slightly grazes and (b) clearly strikes the 39K compressed MOT. In
both cases, atoms are removed from the cloud and leave behind a gap, which is clearly visible
in (b).
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11. Summary and Outlook

This Thesis reports on the technical design and experimental realization of an entirely new
quantum gas apparatus that will be used for quantum simulation of condensed matter systems
using a fluorescence quantum gas microscope. To build this apparatus, a formerly unused
room was renovated and converted into a new laboratory by ourselves. The laboratory now
accomodates an operating quantum gas apparatus, with which first experimental studies have
been published already.

The new quantum gas apparatus is a dual-species apparatus that is designed for the pro-
duction and investigation of ultracold mixtures of K, Cs, and KCs ground-state molecules.
It centers around a compact UHV system that has been designed and realized from scratch.
The vacuum system consists of a main vacuum system and a science chamber setup, both of
which have been put successfully into operation during this Thesis. The main vacuum system
is constructed mostly out of stainless steel components and primarily serves as a production
site for atomic condensates. It comprises two 2D+-MOT atom beam sources, two differential
pumping sections, a main chamber, and a pumping section. A detailed description of the main
vacuum system was given in this Thesis. The main chamber is furnished with magnetic com-
pensation coils that have been realized partially in Helmholtz-like configuration and partially
in birdcage-coil configuration. The design of the compensation coils was detailed in this Thesis
and magnetic field simulations were performed to characterize the generated magnetic field
at the position of the atoms.

The science chamber of the K−Cs apparatus will be employed to study ultracold atomic
and molecular samples within optical lattices with single-site and single-atom resolution. For
this purpose, it incorporates a high-resolution imaging system. In the course of this Thesis,
two science chamber setups have been designed and experimentally realized. The first setup
centers around a stainless steel science chamber with home-built vacuum viewports. It was
replaced by a new glass cell science chamber setup. The glass cell houses the front lens of the
imaging system as well as titanium rod electrodes. Both, lens and electrodes, are held within
the glass cell by an elaborate mechanical construction. A precise explanation of the glass cell
science chamber setup as well as its internal mounting construction was presented in this
Thesis and technical aspects have been addressed in depth. A simulation of the deformation
of the upper glass cell window due to the atmospheric pressure led to the conclusion that the
optical performance of the high-resolution imaging system will not be impaired.

The K−Cs apparatus will use the rod electrodes within the glass cell to polarize KCs
molecules. For this reason, the electric field dependence of the (transition) dipole moments of
the energetically lowest lying rotational states of the electronic and vibrational ground state of
polarized 39KCs molecules was computed. Furthermore, different electric field distributions
that can be generated with the rod electrodes were simulated. Their expected homogene-
ity was analyzed and numerically evaluated. A study of the influence of the found resid-
ual field inhomogeneities on the optical trapping of deeply bound 39KCs molecules within a
532 nm−square lattice showed that no relevant impairment of the on-site confinement is ex-
pected. Additionally, the effect of the residual electric field inhomogeneities of the vertical
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electric field configuration on spin exchange between 39KCs molecules were numerically ex-
amined. The study demonstrated that the vertical electric field configuration is homogeneous
enough to observe nearest-neighbor spin exchange between 39KCs molecules within a 532 nm-
lattice spacing 2D square optical lattice across the entire field of view of the K−Cs imaging
system. As part of this computation, the parameter regime of the spin-coupling constants of
the Heisenberg XXZ spin lattice model that will be accessible within the K−Cs apparatus was
determined.

A further goal of this Thesis was to start and advance the project of violet fluorescence
quantum gas microscopy of 39K atoms within the K−Cs apparatus using the 4S1/2 → 5P3/2

transition. As a first step into this direction, a preliminary theoretical study on the feasibil-
ity of violet fluorescence imaging of trapped 39K atoms with simultaneous EIT cooling was
conducted in this Thesis. The results of the simulation suggest that lattice-confined 39K atoms
that are exposed to resonant 404.4 nm laser light and simultaneous EIT cooling emit enough
violet photons within a 1 s exposure time to perform fluorescence quantum gas microscopy.
For the simulation it was necessary to calculate the frequency-dependent valence scalar and
valence tensor polarizabilities for all atomic states between the 4S1/2 and 5P3/2 level of 39K for
1064 nm laser light. The numerical results for the atomic polarizabilities and their uncertain-
ties were tabulated and discussed. The program that was developed to determine the atomic
polarizabilities of 39K can be furthermore used to compute the atomic polarizabilities at other
desired laser wavelengths. For testing and studying violet fluorescence imaging of 39K atoms
in experiments, a home-built diode laser system for 404.4 nm laser light was set up. The diode
laser is frequency-stabilized with modulation transfer saturation spectroscopy and achieves
up to 27 mW of single-mode laser light. Absorption images of laser cooled 39K atoms within
the main chamber demonstrated the effect of the violet laser beam on the atoms.

Within this Thesis work three peer-reviewed journal publications appeared: in a first pub-
lication, we described the experimental capabilities of the new K−Cs apparatus and reported
on the independent production of atomic 39K and 133Cs BECs in one experimental apparatus.
In particular we outlined the experimental sequence that is required to achieve 39K and 133Cs
condensates within the K−Cs apparatus. In a second publication, interspecies Feshbach reso-
nances in mixtures of 39K and 133Cs atoms were studied. The observed Feshbach resonances
allowed the refinement of the K−Cs interaction potentials and lead to an improved characteri-
zation of the scattering and bound-state properties of the isotopes 39K, 40K, and 41K interacting
with 133Cs. In a third publication, sub-Doppler laser cooling of 39K atoms using degenerate 3D
Raman sideband cooling on the D1 optical transition was investigated. The implementation
of this new laser cooling scheme to our experimental sequence lead to a fourfold temperature
reduction and a tenfold phase-space density increase of the laser cooled 39K atoms compared
to our previous cooling scheme.

In near future, the main experimental focus of the K−Cs apparatus will be twofold: one
primary goal will be the investigation of K and Cs atoms in optical lattices with the high-
resolution imaging system. This project is currently pursued and mechanical and optical in-
frastructure around the glass cell is mounted. The part of the high-resolution imaging system
outside the glass cell is all set and ready for implementation. The first step towards fluores-
cence quantum gas microscopy within the K−Cs apparatus will be the reliable transport of
atomic potassium and cesium samples from the main chamber to the glass cell. To minimize
three-body losses during the transport, it will be crucial to control the scattering length of the
K and Cs atoms over the entire transportation distance. For this reason, it is planned to mount
additional magnetic offset coils along the transportation axis.
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The second short-term goal of the K−Cs apparatus will be the formation of ultracold
39KCs ground-state molecules. In that respect, we envision to first create a Bose-Bose double-
species Mott insulator state of 39K and Cs atoms within an optical lattice and then use magneto-
association and subsequent STIRAP to create 39KCs molecules in their absolute ground state
[Rei17]. For the last step, it will be necessary to first experimentally identify the absolute
rovibrational ground state of the electronic ground state of 39KCs via molecular spectroscopy.

Violet fluorescence quantum gas microscopy of trapped 39K atoms within the K−Cs appa-
ratus after all is a long-term project. It will come to the fore after experience with conventional
fluorescence quantum gas microscopy on the principal D line optical transitions of potassium
will have been gained.
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B. Anti-Reflection Coating Charts for
the Main Chamber Viewports

B.1. Coating A (750−1500 nm)
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Figure B.1.: Rest reflectivity. Measured reflectivity of the anti-reflection coating given in per-
centage per side for perpendicular incidence. Figure reprinted with permission from Larson
Electronic Glass.
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B. Anti-Reflection Coating Charts for the Main Chamber Viewports

B.2. Coating B (400−532 nm & 1064 nm)
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Figure B.2.: Rest reflectivity. Measured reflectivity of the anti-reflection coating given in per-
centage per side for perpendicular incidence. Figure reprinted with permission from Larson
Electronic Glass.
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C. Technical Drawings of the Main
Vacuum System

C.1. CF40 Re-Entrant Viewport

Figure C.1.: Technical drawing of the inverted CF40 viewport located at the main chamber.
Dimensions are given in millimeter. Figure reprinted with permission from UKAEA, United
Kingdom.
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C. Technical Drawings of the Main Vacuum System

C.2. CF200 Re-Entrant Viewport

Figure C.2.: Technical drawing of the inverted CF200 viewport located at the main chamber.
Dimensions are given in millimeter. Figure reprinted with permission from UKAEA, United
Kingdom.
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C.3. Stainless Steel Mirror

C.3. Stainless Steel Mirror
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Figure C.3.: Technical drawing of the stainless steel mirrors used in the 2D-MOT chambers.
Dimensions are given in millimeter. Material: 1.4432.
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C. Technical Drawings of the Main Vacuum System

C.4. 2D-MOT Glass Cell

Figure C.4.: Technical drawing of the 2D-MOT glass cell. Dimensions are given in millimeter.
Figure reprinted with permission from Hellma, Germany.
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C.5. Stainless Steel Rod

C.5. Stainless Steel Rod
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Figure C.5.: Technical drawing of the stainless steel rod of the differential pumping section.
Dimensions are given in millimeter. Material: 1.4301.
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C. Technical Drawings of the Main Vacuum System

C.6. CF50-to-CF16 Straight Reducer
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Figure C.6.: Technical drawing of the CF50-to-CF16 straight reducer of the differential pump-
ing section. Dimensions are given in millimeter. Material: 1.4301.
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D. Technical Drawing of the Stainless
Steel Science Chamber Setup

D.1. Home-Built CF63 Viewport

Figure D.1.: Technical drawing of the home-built CF63 viewports at the stainless steel science
chamber. Dimensions are given in millimeter. Material: 1.4435/BN2.
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E. Technical Drawings of the Glass
Cell Science Chamber Setup

E.1. Glass Cell Science Chamber

Figure E.1.: Technical drawing of the glass cell science chamber. Dimensions are given in
millimeter.
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E. Technical Drawings of the Glass Cell Science Chamber Setup

E.2. Titanium Rod Electrodes
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Figure E.2.: Technical drawing of the titanium rod electrodes within the glass cell science cham-
ber. Dimensions are given in millimeter. Material: 3.7035
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E.3. Lens Holder

E.3. Lens Holder
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Figure E.3.: Technical drawing of the lens holders in the glass cell science chamber. Dimensions
are given in millimeter. Material: Macor®.
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E. Technical Drawings of the Glass Cell Science Chamber Setup

E.4. Electrodes Holder
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Figure E.4.: Technical drawing of the electrodes holder in the glass cell science chamber. Di-
mensions are given in millimeter. Material: Macor®.
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E.5. Sphere Holder

E.5. Sphere Holder
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Figure E.5.: Technical drawing of the sphere holder in the glass cell science chamber. Dimen-
sions are given in millimeter. Material: Macor®.
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F. Anti-Reflection Coating Charts for
the Glass Cell Science Chamber

F.1. Coating Type 1 (766 nm, 852 nm, and 1064 nm)

Figure F.1.: Simulation of the anti-reflection coating of type 1 for the glass cell substrates for
perpendicular incidence and a single surface. The coating was calculated by Dr. Ding (email:
fpding@gmail.com). Figure reprinted with permission from Japan Cell.
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F. Anti-Reflection Coating Charts for the Glass Cell Science Chamber

F.2. Coating Type 2 (1064 nm−1500 nm)

Figure F.2.: Simulation of the anti-reflection coating of type 2 for the glass cell substrates for
perpendicular incidence and a single surface. The coating was calculated by Dr. Ding (email:
fpding@gmail.com). Figure reprinted with permission from Japan Cell.
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